紧致单连通洛伦兹流形的保角群

IF 3.5 1区 数学 Q1 MATHEMATICS
K. Melnick, V. Pecastaing
{"title":"紧致单连通洛伦兹流形的保角群","authors":"K. Melnick, V. Pecastaing","doi":"10.1090/JAMS/976","DOIUrl":null,"url":null,"abstract":"We prove that the conformal group of a closed, simply connected, real analytic Lorentzian manifold is compact. D'Ambra proved in 1988 that the isometry group of such a manifold is compact. Our result implies the Lorentzian Lichnerowicz Conjecture for real analytic Lorentzian manifolds with finite fundamental group. \nSecond version adds some clarifications and corrections.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The conformal group of a compact simply connected Lorentzian manifold\",\"authors\":\"K. Melnick, V. Pecastaing\",\"doi\":\"10.1090/JAMS/976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the conformal group of a closed, simply connected, real analytic Lorentzian manifold is compact. D'Ambra proved in 1988 that the isometry group of such a manifold is compact. Our result implies the Lorentzian Lichnerowicz Conjecture for real analytic Lorentzian manifolds with finite fundamental group. \\nSecond version adds some clarifications and corrections.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/976\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/976","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了闭的、单连通的实解析洛伦兹流形的保角群是紧致的。D’Ambra在1988年证明了这样一个流形的等距群是紧致的。我们的结果暗示了具有有限基群的实解析洛伦兹流形的洛伦兹Lichnerowicz猜想。第二个版本增加了一些澄清和更正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The conformal group of a compact simply connected Lorentzian manifold
We prove that the conformal group of a closed, simply connected, real analytic Lorentzian manifold is compact. D'Ambra proved in 1988 that the isometry group of such a manifold is compact. Our result implies the Lorentzian Lichnerowicz Conjecture for real analytic Lorentzian manifolds with finite fundamental group. Second version adds some clarifications and corrections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信