Benenti张量:射影微分几何中的一个有用工具

IF 0.5 Q3 MATHEMATICS
G. Manno, Andreas Vollmer
{"title":"Benenti张量:射影微分几何中的一个有用工具","authors":"G. Manno, Andreas Vollmer","doi":"10.1515/coma-2018-0006","DOIUrl":null,"url":null,"abstract":"Abstract Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct a (1, 1)- tensor L(g, ḡ) called the Benenti tensor. In this paper we discuss some geometrical properties of Benenti tensors when (g, ḡ) are projectively equivalent, particularly in the case of degree of mobility equal to 2.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"5 1","pages":"111 - 121"},"PeriodicalIF":0.5000,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2018-0006","citationCount":"6","resultStr":"{\"title\":\"Benenti Tensors: A useful tool in Projective Differential Geometry\",\"authors\":\"G. Manno, Andreas Vollmer\",\"doi\":\"10.1515/coma-2018-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct a (1, 1)- tensor L(g, ḡ) called the Benenti tensor. In this paper we discuss some geometrical properties of Benenti tensors when (g, ḡ) are projectively equivalent, particularly in the case of degree of mobility equal to 2.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"5 1\",\"pages\":\"111 - 121\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2018-0006\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2018-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2018-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

如果两个度量具有相同的测地线(视为未参数化曲线),则它们被称为射影等效。度量g的可迁移度是度量空间的维数,其射影等价于g。对于同一流形上的任意一对度量(g,),可以构造一个(1,1)-张量L(g,),称为Benenti张量。本文讨论了当(g, r)是射影等价时,特别是当迁移度等于2时,Benenti张量的一些几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benenti Tensors: A useful tool in Projective Differential Geometry
Abstract Two metrics are said to be projectively equivalent if they share the same geodesics (viewed as unparametrized curves). The degree of mobility of a metric g is the dimension of the space of the metrics projectively equivalent to g. For any pair of metrics (g, ḡ) on the same manifold one can construct a (1, 1)- tensor L(g, ḡ) called the Benenti tensor. In this paper we discuss some geometrical properties of Benenti tensors when (g, ḡ) are projectively equivalent, particularly in the case of degree of mobility equal to 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信