半格单调展开的拓扑对偶性

IF 0.6 4区 数学 Q3 MATHEMATICS
Ismael Calomino, Paula Menchón, William J. Zuluaga Botero
{"title":"半格单调展开的拓扑对偶性","authors":"Ismael Calomino,&nbsp;Paula Menchón,&nbsp;William J. Zuluaga Botero","doi":"10.1007/s10485-022-09690-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we provide a Stone style duality for monotone semilattices by using the topological duality developed in S. Celani, L.J. González (Appl Categ Struct 28:853–875, 2020) for semilattices together with a topological description of their canonical extension. As an application of this duality we obtain a characterization of the congruences of monotone semilattices by means of monotone lower-Vietoris-type topologies. \n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"30 6","pages":"1257 - 1282"},"PeriodicalIF":0.6000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-022-09690-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A Topological Duality for Monotone Expansions of Semilattices\",\"authors\":\"Ismael Calomino,&nbsp;Paula Menchón,&nbsp;William J. Zuluaga Botero\",\"doi\":\"10.1007/s10485-022-09690-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we provide a Stone style duality for monotone semilattices by using the topological duality developed in S. Celani, L.J. González (Appl Categ Struct 28:853–875, 2020) for semilattices together with a topological description of their canonical extension. As an application of this duality we obtain a characterization of the congruences of monotone semilattices by means of monotone lower-Vietoris-type topologies. \\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"30 6\",\"pages\":\"1257 - 1282\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-022-09690-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-022-09690-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09690-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用S. Celani, L.J. González (Appl Categ Struct 28:853-875, 2020)提出的半格拓扑对偶性及其正则扩展的拓扑描述,给出了单调半格的Stone型对偶性。作为这一对偶性的应用,我们利用单调下维型拓扑得到了单调半格同余的一个表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Topological Duality for Monotone Expansions of Semilattices

In this paper we provide a Stone style duality for monotone semilattices by using the topological duality developed in S. Celani, L.J. González (Appl Categ Struct 28:853–875, 2020) for semilattices together with a topological description of their canonical extension. As an application of this duality we obtain a characterization of the congruences of monotone semilattices by means of monotone lower-Vietoris-type topologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信