Riemann曲面退化族上Narasimhan-Simha测度的收敛性

Pub Date : 2020-11-30 DOI:10.4310/ajm.2022.v26.n5.a3
S. Shivaprasad
{"title":"Riemann曲面退化族上Narasimhan-Simha测度的收敛性","authors":"S. Shivaprasad","doi":"10.4310/ajm.2022.v26.n5.a3","DOIUrl":null,"url":null,"abstract":"Given a compact Riemann surface $Y$ and a positive integer $m$, Narasimhan and Simha defined a measure on $Y$ associated to the $m$-th tensor power of the canonical line bundle. We study the limit of this measure on holomorphic families of Riemann surfaces with semistable reduction. The convergence takes place on a hybrid space whose central fiber is the associated metrized curve complex in the sense of Amini and Baker. We also study the limit of the measure induced by the Hermitian pairing defined by the Narasimhan-Simha measure. For $m = 1$, both these measures coincide with the Bergman measure on $Y$. We also extend the definition of the Narasimhan-Simha measure to the singular curves on the boundary of $\\overline{\\mathcal{M}_g}$ in such a way that these measures form a continuous family of measures on the universal curve over $\\overline{\\mathcal{M}_g}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence of Narasimhan–Simha measures on degenerating families of Riemann surfaces\",\"authors\":\"S. Shivaprasad\",\"doi\":\"10.4310/ajm.2022.v26.n5.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a compact Riemann surface $Y$ and a positive integer $m$, Narasimhan and Simha defined a measure on $Y$ associated to the $m$-th tensor power of the canonical line bundle. We study the limit of this measure on holomorphic families of Riemann surfaces with semistable reduction. The convergence takes place on a hybrid space whose central fiber is the associated metrized curve complex in the sense of Amini and Baker. We also study the limit of the measure induced by the Hermitian pairing defined by the Narasimhan-Simha measure. For $m = 1$, both these measures coincide with the Bergman measure on $Y$. We also extend the definition of the Narasimhan-Simha measure to the singular curves on the boundary of $\\\\overline{\\\\mathcal{M}_g}$ in such a way that these measures form a continuous family of measures on the universal curve over $\\\\overline{\\\\mathcal{M}_g}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2022.v26.n5.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2022.v26.n5.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定紧致黎曼曲面$Y$和正整数$m$,Narasimhan和Simha定义了$Y$上的一个测度,该测度与正则线丛的$m$次张量幂有关。我们研究了这一测度在具有半稳定约简的黎曼曲面全纯族上的极限。收敛发生在一个混合空间上,其中心纤维是Amini和Baker意义上的相关度量化曲线复形。我们还研究了由Narasimhan-Simha测度定义的Hermitian配对诱导的测度的极限。对于$m=1$,这两个度量都与$Y$的Bergman度量一致。我们还将Narasimhan-Simha测度的定义推广到$\overline边界上的奇异曲线{M}_g}$,使得这些度量在$\overline{\mathcal上的通用曲线上形成一个连续的度量族{M}_g}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Convergence of Narasimhan–Simha measures on degenerating families of Riemann surfaces
Given a compact Riemann surface $Y$ and a positive integer $m$, Narasimhan and Simha defined a measure on $Y$ associated to the $m$-th tensor power of the canonical line bundle. We study the limit of this measure on holomorphic families of Riemann surfaces with semistable reduction. The convergence takes place on a hybrid space whose central fiber is the associated metrized curve complex in the sense of Amini and Baker. We also study the limit of the measure induced by the Hermitian pairing defined by the Narasimhan-Simha measure. For $m = 1$, both these measures coincide with the Bergman measure on $Y$. We also extend the definition of the Narasimhan-Simha measure to the singular curves on the boundary of $\overline{\mathcal{M}_g}$ in such a way that these measures form a continuous family of measures on the universal curve over $\overline{\mathcal{M}_g}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信