具有临界增长的局部和分数阶NLS方程的多重性和集中性结果

IF 1.5 3区 数学 Q1 MATHEMATICS
Marco Gallo
{"title":"具有临界增长的局部和分数阶NLS方程的多重性和集中性结果","authors":"Marco Gallo","doi":"10.57262/ade026-0910-397","DOIUrl":null,"url":null,"abstract":"Goal of this paper is to study positive semiclassical solutions of the nonlinear Schrodinger equation $$ \\varepsilon^{2s}(- \\Delta)^s u+ V(x) u= f(u), \\quad x \\in \\mathbb{R}^N,$$ where $s \\in (0,1)$, $N \\geq 2$, $V \\in C(\\mathbb{R}^N,\\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. We obtain existence and multiplicity for $\\varepsilon>0$ small, where the number of solutions is related to the cup-length of a set of local minima of $V$. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. We highlight that these results are new also in the limiting local setting $s=1$ and $N\\geq 3$, with an exponential decay of the solutions.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiplicity and concentration results for local and fractional NLS equations with critical growth\",\"authors\":\"Marco Gallo\",\"doi\":\"10.57262/ade026-0910-397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goal of this paper is to study positive semiclassical solutions of the nonlinear Schrodinger equation $$ \\\\varepsilon^{2s}(- \\\\Delta)^s u+ V(x) u= f(u), \\\\quad x \\\\in \\\\mathbb{R}^N,$$ where $s \\\\in (0,1)$, $N \\\\geq 2$, $V \\\\in C(\\\\mathbb{R}^N,\\\\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. We obtain existence and multiplicity for $\\\\varepsilon>0$ small, where the number of solutions is related to the cup-length of a set of local minima of $V$. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. We highlight that these results are new also in the limiting local setting $s=1$ and $N\\\\geq 3$, with an exponential decay of the solutions.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade026-0910-397\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade026-0910-397","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是研究非线性薛定谔方程$$ \varepsilon^{2s}(- \Delta)^s u+ V(x) u= f(u), \quad x \in \mathbb{R}^N,$$的正半经典解,其中$s \in (0,1)$, $N \geq 2$, $V \in C(\mathbb{R}^N,\mathbb{R})$为正势,$f$为临界且满足一般Berestycki-Lions型条件。我们得到了$\varepsilon>0$小问题的存在性和多重性,其中解的个数与$V$的一组局部极小值的杯长有关。此外,这些解被证明集中在势井中,表现出多项式衰减。我们强调,这些结果在极限局部设置$s=1$和$N\geq 3$中也是新的,解呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity and concentration results for local and fractional NLS equations with critical growth
Goal of this paper is to study positive semiclassical solutions of the nonlinear Schrodinger equation $$ \varepsilon^{2s}(- \Delta)^s u+ V(x) u= f(u), \quad x \in \mathbb{R}^N,$$ where $s \in (0,1)$, $N \geq 2$, $V \in C(\mathbb{R}^N,\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. We obtain existence and multiplicity for $\varepsilon>0$ small, where the number of solutions is related to the cup-length of a set of local minima of $V$. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. We highlight that these results are new also in the limiting local setting $s=1$ and $N\geq 3$, with an exponential decay of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信