{"title":"具有临界增长的局部和分数阶NLS方程的多重性和集中性结果","authors":"Marco Gallo","doi":"10.57262/ade026-0910-397","DOIUrl":null,"url":null,"abstract":"Goal of this paper is to study positive semiclassical solutions of the nonlinear Schrodinger equation $$ \\varepsilon^{2s}(- \\Delta)^s u+ V(x) u= f(u), \\quad x \\in \\mathbb{R}^N,$$ where $s \\in (0,1)$, $N \\geq 2$, $V \\in C(\\mathbb{R}^N,\\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. We obtain existence and multiplicity for $\\varepsilon>0$ small, where the number of solutions is related to the cup-length of a set of local minima of $V$. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. We highlight that these results are new also in the limiting local setting $s=1$ and $N\\geq 3$, with an exponential decay of the solutions.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiplicity and concentration results for local and fractional NLS equations with critical growth\",\"authors\":\"Marco Gallo\",\"doi\":\"10.57262/ade026-0910-397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goal of this paper is to study positive semiclassical solutions of the nonlinear Schrodinger equation $$ \\\\varepsilon^{2s}(- \\\\Delta)^s u+ V(x) u= f(u), \\\\quad x \\\\in \\\\mathbb{R}^N,$$ where $s \\\\in (0,1)$, $N \\\\geq 2$, $V \\\\in C(\\\\mathbb{R}^N,\\\\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. We obtain existence and multiplicity for $\\\\varepsilon>0$ small, where the number of solutions is related to the cup-length of a set of local minima of $V$. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. We highlight that these results are new also in the limiting local setting $s=1$ and $N\\\\geq 3$, with an exponential decay of the solutions.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade026-0910-397\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade026-0910-397","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiplicity and concentration results for local and fractional NLS equations with critical growth
Goal of this paper is to study positive semiclassical solutions of the nonlinear Schrodinger equation $$ \varepsilon^{2s}(- \Delta)^s u+ V(x) u= f(u), \quad x \in \mathbb{R}^N,$$ where $s \in (0,1)$, $N \geq 2$, $V \in C(\mathbb{R}^N,\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. We obtain existence and multiplicity for $\varepsilon>0$ small, where the number of solutions is related to the cup-length of a set of local minima of $V$. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. We highlight that these results are new also in the limiting local setting $s=1$ and $N\geq 3$, with an exponential decay of the solutions.
期刊介绍:
Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.