用形状微积分计算电介质的力

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
P. Panchal, N. Ren, R. Hiptmair
{"title":"用形状微积分计算电介质的力","authors":"P. Panchal, N. Ren, R. Hiptmair","doi":"10.1515/cmam-2022-0112","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Force Computation for Dielectrics Using Shape Calculus\",\"authors\":\"P. Panchal, N. Ren, R. Hiptmair\",\"doi\":\"10.1515/cmam-2022-0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0112\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们关注的是使用边界元方法(BEM)仅在逐片均匀材料中静电力/转矩的数值计算。基于麦克斯韦应力张量的常规力公式产生了在自然迹空间上不连续的泛函。因此,它们与边界元法结合使用会导致收敛缓慢和精度低。我们采用了[P.Panchal和R.Hiptair,边界元法的静电力计算,SMAI J.Comput.Math.8(2022),49-74]中发现的补救措施。受使用形状演算技术解释的虚功原理的启发,并使用形状优化的伴随方法,我们导出了适用于边界元法的基于稳定界面的力泛函。这是在二阶传输问题的单迹直接边界积分方程的框架下完成的。数值试验证实了计算总力和总力矩的新公式的快速渐近收敛性和优越的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Force Computation for Dielectrics Using Shape Calculus
Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信