植物微生物燃料电池替代能源的研究

Paskalina Melda Latif, Aprila Tiy, M. Muharam, Amirul Aulia, Luthfi
{"title":"植物微生物燃料电池替代能源的研究","authors":"Paskalina Melda Latif, Aprila Tiy, M. Muharam, Amirul Aulia, Luthfi","doi":"10.25077/jnte.v12n2.1061.2023","DOIUrl":null,"url":null,"abstract":"Plant Microbial Fuel Cell (P-MFC) is one of Microbial Fuel Cell type. It can produce electricity and source for plant living. By using the humus soil in the anode chamber, the electron can flow to the cathode chamber. The principle of Plant Microbial Fuel Cell is same with the battery. It flows the direct current. This research makes dual chamber of P-MFC prototype. The salt bridge is used as connection between anode chamber to cathode chamber. The humus soil comes from burning organic waste. Its color is black and contains a lot of microbes. The plant selected in this research was Water Spinach.  The number of water spinach were 20 and 25 stems. P-MFC which has more Water Spinach will produce more voltage and current than the others. For 25 Water Spinach, P-MFC produced 762.4 mV no-load average voltage and 125.8 mV, 085 mA for load condition. The result was bigger caused by for more plants will be more microbes resulted in the humus soil.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Plant Microbial Fuel Cell for Alternative Energy Source\",\"authors\":\"Paskalina Melda Latif, Aprila Tiy, M. Muharam, Amirul Aulia, Luthfi\",\"doi\":\"10.25077/jnte.v12n2.1061.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant Microbial Fuel Cell (P-MFC) is one of Microbial Fuel Cell type. It can produce electricity and source for plant living. By using the humus soil in the anode chamber, the electron can flow to the cathode chamber. The principle of Plant Microbial Fuel Cell is same with the battery. It flows the direct current. This research makes dual chamber of P-MFC prototype. The salt bridge is used as connection between anode chamber to cathode chamber. The humus soil comes from burning organic waste. Its color is black and contains a lot of microbes. The plant selected in this research was Water Spinach.  The number of water spinach were 20 and 25 stems. P-MFC which has more Water Spinach will produce more voltage and current than the others. For 25 Water Spinach, P-MFC produced 762.4 mV no-load average voltage and 125.8 mV, 085 mA for load condition. The result was bigger caused by for more plants will be more microbes resulted in the humus soil.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n2.1061.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1061.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物微生物燃料电池(P-MFC)是微生物燃料电池的一种。它可以产生电力和植物生活的来源。利用阳极室的腐殖质土壤,使电子流向阴极室。植物微生物燃料电池的原理与电池相同。它流过直流电。本研究制作了双腔P-MFC原型机。盐桥是阳极室与阴极室之间的连接。腐殖质土壤来自于燃烧有机废物。它的颜色是黑色的,含有很多微生物。本研究选用的植物为菠菜。水菠菜茎数分别为20根和25根。含有更多水菠菜的P-MFC会比其他材料产生更多的电压和电流。对于25个水菜,P-MFC的空载平均电压为762.4 mV,负载平均电压为125.8 mV,为085 mA。由于植物越多,腐殖质土壤中产生的微生物就越多,结果就越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Study of Plant Microbial Fuel Cell for Alternative Energy Source
Plant Microbial Fuel Cell (P-MFC) is one of Microbial Fuel Cell type. It can produce electricity and source for plant living. By using the humus soil in the anode chamber, the electron can flow to the cathode chamber. The principle of Plant Microbial Fuel Cell is same with the battery. It flows the direct current. This research makes dual chamber of P-MFC prototype. The salt bridge is used as connection between anode chamber to cathode chamber. The humus soil comes from burning organic waste. Its color is black and contains a lot of microbes. The plant selected in this research was Water Spinach.  The number of water spinach were 20 and 25 stems. P-MFC which has more Water Spinach will produce more voltage and current than the others. For 25 Water Spinach, P-MFC produced 762.4 mV no-load average voltage and 125.8 mV, 085 mA for load condition. The result was bigger caused by for more plants will be more microbes resulted in the humus soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信