{"title":"基于视觉的双向推力四旋翼类蝙蝠倒立栖息实现框架","authors":"Pengfei Yu, K. Wong","doi":"10.1177/17568293211073672","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation framework to perform a vision-guided, bat-like inverted perching maneuver with a bi-directional thrust quadrotor platform. The framework consists of several distinct modules (guidance, motion planning, control, state estimation) that can be easily be individually customized in the future to meet specific research requirements. The main contribution of this paper lies in the whole framework pipeline with a modular structure developed for implementing a generalized framework for an agile quadrotor to achieve inverted perching. A computationally-light guidance module has been developed as an example to demonstrate the capability while being independent of accurate pre-known target information, and does not require the state estimation of the quadrotor to be provided by an external motion capture system as in our previous work. A motion planning module based on an optimization method has been introduced to generate a two-stage inverted perching trajectory aiming at minimizing altitude loss during the half-flip maneuver. A control module has been developed to enable a bi-directional quadrotor to fly in both upright and inverted states and closely follow the intended trajectory. The compensation strategy used in the control module is key to minimizing the transition time between the upright and inverted states. Finally, an experimental flight platform has been developed to demonstrate the capabilities of the framework. During testing, the proposed framework has achieved an 80 % success rate. To the best of our knowledge, this paper presents the first time a quadrotor has achieved the inverted perching maneuver using onboard vision guidance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An implementation framework for vision-based bat-like inverted perching with bi-directionalthrust quadrotor\",\"authors\":\"Pengfei Yu, K. Wong\",\"doi\":\"10.1177/17568293211073672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an implementation framework to perform a vision-guided, bat-like inverted perching maneuver with a bi-directional thrust quadrotor platform. The framework consists of several distinct modules (guidance, motion planning, control, state estimation) that can be easily be individually customized in the future to meet specific research requirements. The main contribution of this paper lies in the whole framework pipeline with a modular structure developed for implementing a generalized framework for an agile quadrotor to achieve inverted perching. A computationally-light guidance module has been developed as an example to demonstrate the capability while being independent of accurate pre-known target information, and does not require the state estimation of the quadrotor to be provided by an external motion capture system as in our previous work. A motion planning module based on an optimization method has been introduced to generate a two-stage inverted perching trajectory aiming at minimizing altitude loss during the half-flip maneuver. A control module has been developed to enable a bi-directional quadrotor to fly in both upright and inverted states and closely follow the intended trajectory. The compensation strategy used in the control module is key to minimizing the transition time between the upright and inverted states. Finally, an experimental flight platform has been developed to demonstrate the capabilities of the framework. During testing, the proposed framework has achieved an 80 % success rate. To the best of our knowledge, this paper presents the first time a quadrotor has achieved the inverted perching maneuver using onboard vision guidance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293211073672\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211073672","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An implementation framework for vision-based bat-like inverted perching with bi-directionalthrust quadrotor
This paper presents an implementation framework to perform a vision-guided, bat-like inverted perching maneuver with a bi-directional thrust quadrotor platform. The framework consists of several distinct modules (guidance, motion planning, control, state estimation) that can be easily be individually customized in the future to meet specific research requirements. The main contribution of this paper lies in the whole framework pipeline with a modular structure developed for implementing a generalized framework for an agile quadrotor to achieve inverted perching. A computationally-light guidance module has been developed as an example to demonstrate the capability while being independent of accurate pre-known target information, and does not require the state estimation of the quadrotor to be provided by an external motion capture system as in our previous work. A motion planning module based on an optimization method has been introduced to generate a two-stage inverted perching trajectory aiming at minimizing altitude loss during the half-flip maneuver. A control module has been developed to enable a bi-directional quadrotor to fly in both upright and inverted states and closely follow the intended trajectory. The compensation strategy used in the control module is key to minimizing the transition time between the upright and inverted states. Finally, an experimental flight platform has been developed to demonstrate the capabilities of the framework. During testing, the proposed framework has achieved an 80 % success rate. To the best of our knowledge, this paper presents the first time a quadrotor has achieved the inverted perching maneuver using onboard vision guidance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.