一个包含勒让德多项式的定积分族

IF 0.7 Q2 MATHEMATICS
M. I. Qureshi, S. Malik, D. Ahmad
{"title":"一个包含勒让德多项式的定积分族","authors":"M. I. Qureshi, S. Malik, D. Ahmad","doi":"10.31489/2023m2/116-130","DOIUrl":null,"url":null,"abstract":"The main objective of this article is to provide the analytical solutions (not previously found and not available in the literature) of some problems related with definite integrals integrands of which are the products of the derivatives of Legendre’s polynomials of first kind having different order, with the help of some derivatives of Legendre’s polynomials of first kind P_n(x), Rodrigues formula, Leibnitz’s generalized rule for successive integration by parts and certain values of successive differential coefficients of (x^2 − 1)^r at x = ±1.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A family of definite integrals involving Legendre’s polynomials\",\"authors\":\"M. I. Qureshi, S. Malik, D. Ahmad\",\"doi\":\"10.31489/2023m2/116-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this article is to provide the analytical solutions (not previously found and not available in the literature) of some problems related with definite integrals integrands of which are the products of the derivatives of Legendre’s polynomials of first kind having different order, with the help of some derivatives of Legendre’s polynomials of first kind P_n(x), Rodrigues formula, Leibnitz’s generalized rule for successive integration by parts and certain values of successive differential coefficients of (x^2 − 1)^r at x = ±1.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m2/116-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/116-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是利用一类勒让德多项式的导数P_n(x), Rodrigues公式,莱布尼茨逐次积分的广义规则和(x^2−1)^r在x =±1时的逐次微分系数的某些值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A family of definite integrals involving Legendre’s polynomials
The main objective of this article is to provide the analytical solutions (not previously found and not available in the literature) of some problems related with definite integrals integrands of which are the products of the derivatives of Legendre’s polynomials of first kind having different order, with the help of some derivatives of Legendre’s polynomials of first kind P_n(x), Rodrigues formula, Leibnitz’s generalized rule for successive integration by parts and certain values of successive differential coefficients of (x^2 − 1)^r at x = ±1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信