{"title":"利用Mamquist-Takenaka系统构造有理插值","authors":"F. Weisz","doi":"10.33205/cma.1251068","DOIUrl":null,"url":null,"abstract":"Rational functions have deep system-theoretic significance. They represent the natural way of modeling linear dynamical systems in the frequency (Laplace) domain. Using rational functions, the goal of this paper to compute models that match (interpolate) given data sets of measurements. In this paper, the authors show that using special rational orthonormal systems, the Malmquist-Takenaka systems, it is possible to write the rational interpolant $r_{(n, m)}$, for $n=N-1, m=N$ using only $N$ sampling nodes (instead of $2N$ nodes) if the interpolating nodes are in the complex unit circle or on the upper half-plane. Moreover, the authors prove convergence results related to the rational interpolant. They give an efficient algorithm for the determination of the rational interpolant.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of rational interpolations using Mamquist-Takenaka systems\",\"authors\":\"F. Weisz\",\"doi\":\"10.33205/cma.1251068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rational functions have deep system-theoretic significance. They represent the natural way of modeling linear dynamical systems in the frequency (Laplace) domain. Using rational functions, the goal of this paper to compute models that match (interpolate) given data sets of measurements. In this paper, the authors show that using special rational orthonormal systems, the Malmquist-Takenaka systems, it is possible to write the rational interpolant $r_{(n, m)}$, for $n=N-1, m=N$ using only $N$ sampling nodes (instead of $2N$ nodes) if the interpolating nodes are in the complex unit circle or on the upper half-plane. Moreover, the authors prove convergence results related to the rational interpolant. They give an efficient algorithm for the determination of the rational interpolant.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1251068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1251068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
有理函数具有深刻的系统理论意义。它们代表了在频率(拉普拉斯)域中对线性动力系统进行建模的自然方法。使用有理函数,本文的目标是计算匹配(插值)给定测量数据集的模型。本文证明了在特殊的有理正交系统Malmquist-Takenaka系统中,对于$n= n -1, m= n $的有理插值$r_{(n, m)}$,只要使用$n $采样节点(而不是$2N$节点)就可以写出$n= 1, m= n $的有理插值$r_{(n, m)}$,如果插值节点位于复单位圆或上半平面上。此外,作者还证明了有关有理插值的收敛性结果。给出了一种确定有理插值的有效算法。
Construction of rational interpolations using Mamquist-Takenaka systems
Rational functions have deep system-theoretic significance. They represent the natural way of modeling linear dynamical systems in the frequency (Laplace) domain. Using rational functions, the goal of this paper to compute models that match (interpolate) given data sets of measurements. In this paper, the authors show that using special rational orthonormal systems, the Malmquist-Takenaka systems, it is possible to write the rational interpolant $r_{(n, m)}$, for $n=N-1, m=N$ using only $N$ sampling nodes (instead of $2N$ nodes) if the interpolating nodes are in the complex unit circle or on the upper half-plane. Moreover, the authors prove convergence results related to the rational interpolant. They give an efficient algorithm for the determination of the rational interpolant.