完全和渐进II型截尾样本下逆高斯分布的可靠性参数估计

IF 2.3 2区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Samadrita Bera, N. Jana
{"title":"完全和渐进II型截尾样本下逆高斯分布的可靠性参数估计","authors":"Samadrita Bera, N. Jana","doi":"10.1080/16843703.2022.2109871","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we study estimation of stress-strength reliability, assuming the stress and strength variables are inverse Gaussian distributed with unknown parameters. When the coefficient of variations of the distributions is unknown but equal, we develop MLE, Bayes estimator, bootstrap interval of the reliability. The profile likelihood Bayes estimator of the coefficient of variation is also derived. When all parameters are different, we derive the MLE, UMVUE, Bayes estimator, bootstrap interval, and highest posterior density credible interval of the stress-strength reliability. The predictive Bayes estimators of the reliability functions are derived. Under progressive type-II censoring, we derive the MLE, Bayes estimator and bootstrap confidence interval. Monte-Carlo simulation results and real data-based examples are also presented. We analyze lung cancer and air pollution data sets as applications of the stress-strength model.","PeriodicalId":49133,"journal":{"name":"Quality Technology and Quantitative Management","volume":"20 1","pages":"334 - 359"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimating reliability parameters for inverse Gaussian distributions under complete and progressively type-II censored samples\",\"authors\":\"Samadrita Bera, N. Jana\",\"doi\":\"10.1080/16843703.2022.2109871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we study estimation of stress-strength reliability, assuming the stress and strength variables are inverse Gaussian distributed with unknown parameters. When the coefficient of variations of the distributions is unknown but equal, we develop MLE, Bayes estimator, bootstrap interval of the reliability. The profile likelihood Bayes estimator of the coefficient of variation is also derived. When all parameters are different, we derive the MLE, UMVUE, Bayes estimator, bootstrap interval, and highest posterior density credible interval of the stress-strength reliability. The predictive Bayes estimators of the reliability functions are derived. Under progressive type-II censoring, we derive the MLE, Bayes estimator and bootstrap confidence interval. Monte-Carlo simulation results and real data-based examples are also presented. We analyze lung cancer and air pollution data sets as applications of the stress-strength model.\",\"PeriodicalId\":49133,\"journal\":{\"name\":\"Quality Technology and Quantitative Management\",\"volume\":\"20 1\",\"pages\":\"334 - 359\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Technology and Quantitative Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/16843703.2022.2109871\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Technology and Quantitative Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/16843703.2022.2109871","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了假设应力和强度变量为参数未知的逆高斯分布的应力-强度可靠度估计问题。当分布的变异系数未知但相等时,我们建立了最大似然估计、贝叶斯估计、可靠度的自举区间。并推导了变异系数的似然贝叶斯估计量。在各参数不同的情况下,导出了应力-强度可靠性的MLE、UMVUE、Bayes估计量、bootstrap区间和最高后验密度可信区间。推导了可靠性函数的预测贝叶斯估计。在渐进式ii型审查下,我们得到了最大似然值、贝叶斯估计量和自举置信区间。给出了蒙特卡罗仿真结果和基于实际数据的算例。我们分析了肺癌和空气污染数据集作为应力-强度模型的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating reliability parameters for inverse Gaussian distributions under complete and progressively type-II censored samples
ABSTRACT In this paper, we study estimation of stress-strength reliability, assuming the stress and strength variables are inverse Gaussian distributed with unknown parameters. When the coefficient of variations of the distributions is unknown but equal, we develop MLE, Bayes estimator, bootstrap interval of the reliability. The profile likelihood Bayes estimator of the coefficient of variation is also derived. When all parameters are different, we derive the MLE, UMVUE, Bayes estimator, bootstrap interval, and highest posterior density credible interval of the stress-strength reliability. The predictive Bayes estimators of the reliability functions are derived. Under progressive type-II censoring, we derive the MLE, Bayes estimator and bootstrap confidence interval. Monte-Carlo simulation results and real data-based examples are also presented. We analyze lung cancer and air pollution data sets as applications of the stress-strength model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quality Technology and Quantitative Management
Quality Technology and Quantitative Management ENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.10
自引率
21.40%
发文量
47
审稿时长
>12 weeks
期刊介绍: Quality Technology and Quantitative Management is an international refereed journal publishing original work in quality, reliability, queuing service systems, applied statistics (including methodology, data analysis, simulation), and their applications in business and industrial management. The journal publishes both theoretical and applied research articles using statistical methods or presenting new results, which solve or have the potential to solve real-world management problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信