利用改进的YOLOv5和先验知识融合检测虎河豚

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
{"title":"利用改进的YOLOv5和先验知识融合检测虎河豚","authors":"","doi":"10.1016/j.inpa.2023.02.010","DOIUrl":null,"url":null,"abstract":"<div><p>Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 299-309"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000203/pdfft?md5=30fd08109e365823c7cc20853e938648&pid=1-s2.0-S2214317323000203-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of tiger puffer using improved YOLOv5 with prior knowledge fusion\",\"authors\":\"\",\"doi\":\"10.1016/j.inpa.2023.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"11 3\",\"pages\":\"Pages 299-309\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000203/pdfft?md5=30fd08109e365823c7cc20853e938648&pid=1-s2.0-S2214317323000203-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虎河豚是一种在高密度环境下养殖的重要商业鱼类,准确检测虎河豚对于判断其生长状况和实现精确投喂不可或缺。然而,在实际养殖环境中,由于目标模糊和遮挡等原因,养殖虎河豚的检测精度和召回率较低。为了解决这一问题,我们提出了一种名为知识聚合 YOLO(KAYOLO)的养殖虎河豚检测模型,它将先验知识与改进的 YOLOv5 融合在一起。为了减轻目标模糊造成的特征损失,我们借鉴了人类在识别模糊目标时利用先验知识进行推理的做法,利用先验知识强化虎河豚的特征,提高了检测精度。针对高密度养殖环境中相互遮挡造成的漏检问题,我们提出了一种预测框聚合方法,将同一物体的预测框聚合在一起,以减少不同物体之间的影响,从而提高检测召回率。为了验证所提方法的有效性,设计了消融实验、模型性能实验和模型鲁棒性实验。实验结果表明,KAYOLO 的检测精度和召回率分别达到了 94.92% 和 92.21%。与 YOLOv5 相比,这两项指标分别提高了 1.29% 和 1.35%。与 SWIPENet、RoIMix、FERNet 和 SK-YOLOv5 等近期最先进的水下物体检测模型相比,KAYOLO 的精确度分别提高了 2.09%、1.63%、1.13% 和 0.85%,召回率分别提高了 1.2%、0.18%、1.74% 和 0.39%。为了验证模型的鲁棒性,我们在不同的数据集上进行了实验,与 YOLOv5 相比,KAYOLO 的精确度和召回率提高了约 1.3%。研究表明,KAYOLO 通过减少模糊和遮挡效应,有效提高了养殖虎河豚的检测能力。此外,该模型在不同数据集上具有很强的泛化能力,表明该模型可适应不同环境,并具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of tiger puffer using improved YOLOv5 with prior knowledge fusion

Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信