离散时间寄主-寄主模型的局部稳定性分析和分岔

T. Azizi
{"title":"离散时间寄主-寄主模型的局部稳定性分析和分岔","authors":"T. Azizi","doi":"10.4236/ijmnta.2020.92002","DOIUrl":null,"url":null,"abstract":"In this paper, we examine a discrete-time Host-Parasitoid model which is a non-dimensionalized Nicholson and Bailey model. Phase portraits are drawn for different ranges of parameters and display the complicated dynamics of this system. We conduct the bifurcation analysis with respect to intrinsic growth rate r and searching efficiency a. Many forms of complex dynamics such as chaos, periodic windows are observed. Transition route to chaos dynamics is established via period-doubling bifurcations. Conditions of occurrence of the period-doubling, Neimark-Sacker and saddle-node bifurcations are analyzed for b≠a where a,b are searching efficiency. We study stable and unstable manifolds for different equilibrium points and coexistence of different attractors for this non-dimensionalize system. Without the parasitoid, the host population follows the dynamics of the Ricker model.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"9 1","pages":"19-33"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Stability Analysis and Bifurcations of a Discrete-Time Host-Parasitoid Model\",\"authors\":\"T. Azizi\",\"doi\":\"10.4236/ijmnta.2020.92002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine a discrete-time Host-Parasitoid model which is a non-dimensionalized Nicholson and Bailey model. Phase portraits are drawn for different ranges of parameters and display the complicated dynamics of this system. We conduct the bifurcation analysis with respect to intrinsic growth rate r and searching efficiency a. Many forms of complex dynamics such as chaos, periodic windows are observed. Transition route to chaos dynamics is established via period-doubling bifurcations. Conditions of occurrence of the period-doubling, Neimark-Sacker and saddle-node bifurcations are analyzed for b≠a where a,b are searching efficiency. We study stable and unstable manifolds for different equilibrium points and coexistence of different attractors for this non-dimensionalize system. Without the parasitoid, the host population follows the dynamics of the Ricker model.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"9 1\",\"pages\":\"19-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ijmnta.2020.92002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ijmnta.2020.92002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种非量纲化的Nicholson - Bailey模型——离散寄主-拟寄主模型。在不同的参数范围内绘制了相位图,显示了系统复杂的动力学特性。我们对固有增长率r和搜索效率a进行了分岔分析。观察到许多形式的复杂动力学,如混沌、周期窗。通过倍周期分岔建立了混沌动力学的过渡路径。分析了b≠a时倍周期分岔、neimmark - sacker分岔和鞍节点分岔发生的条件,其中a、b为搜索效率。研究了该非量纲化系统不同平衡点下的稳定流形和不稳定流形,以及不同吸引子的共存。没有拟寄生物,寄主种群遵循Ricker模型的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Stability Analysis and Bifurcations of a Discrete-Time Host-Parasitoid Model
In this paper, we examine a discrete-time Host-Parasitoid model which is a non-dimensionalized Nicholson and Bailey model. Phase portraits are drawn for different ranges of parameters and display the complicated dynamics of this system. We conduct the bifurcation analysis with respect to intrinsic growth rate r and searching efficiency a. Many forms of complex dynamics such as chaos, periodic windows are observed. Transition route to chaos dynamics is established via period-doubling bifurcations. Conditions of occurrence of the period-doubling, Neimark-Sacker and saddle-node bifurcations are analyzed for b≠a where a,b are searching efficiency. We study stable and unstable manifolds for different equilibrium points and coexistence of different attractors for this non-dimensionalize system. Without the parasitoid, the host population follows the dynamics of the Ricker model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信