{"title":"具有$\\ell$核心索引的对称群的字符表中的零","authors":"Eleanor Mcspirit, K. Ono","doi":"10.4153/S0008439522000443","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$\\mathcal {C}_n =\\left [\\chi _{\\lambda }(\\mu )\\right ]_{\\lambda , \\mu }$\n be the character table for \n$S_n,$\n where the indices \n$\\lambda $\n and \n$\\mu $\n run over the \n$p(n)$\n many integer partitions of \n$n.$\n In this note, we study \n$Z_{\\ell }(n),$\n the number of zero entries \n$\\chi _{\\lambda }(\\mu )$\n in \n$\\mathcal {C}_n,$\n where \n$\\lambda $\n is an \n$\\ell $\n -core partition of \n$n.$\n For every prime \n$\\ell \\geq 5,$\n we prove an asymptotic formula of the form \n$$ \\begin{align*}Z_{\\ell}(n)\\sim \\alpha_{\\ell}\\cdot \\sigma_{\\ell}(n+\\delta_{\\ell})p(n)\\gg_{\\ell} n^{\\frac{\\ell-5}{2}}e^{\\pi\\sqrt{2n/3}}, \\end{align*} $$\n where \n$\\sigma _{\\ell }(n)$\n is a twisted Legendre symbol divisor function, \n$\\delta _{\\ell }:=(\\ell ^2-1)/24,$\n and \n$1/\\alpha _{\\ell }>0$\n is a normalization of the Dirichlet L-value \n$L\\left (\\left ( \\frac {\\cdot }{\\ell } \\right ),\\frac {\\ell -1}{2}\\right ).$\n For primes \n$\\ell $\n and \n$n>\\ell ^6/24,$\n we show that \n$\\chi _{\\lambda }(\\mu )=0$\n whenever \n$\\lambda $\n and \n$\\mu $\n are both \n$\\ell $\n -cores. Furthermore, if \n$Z^*_{\\ell }(n)$\n is the number of zero entries indexed by two \n$\\ell $\n -cores, then, for \n$\\ell \\geq 5$\n , we obtain the asymptotic \n$$ \\begin{align*}Z^*_{\\ell}(n)\\sim \\alpha_{\\ell}^2 \\cdot \\sigma_{\\ell}( n+\\delta_{\\ell})^2 \\gg_{\\ell} n^{\\ell-3}. \\end{align*} $$","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"66 1","pages":"467 - 476"},"PeriodicalIF":0.5000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zeros in the character tables of symmetric groups with an \\n$\\\\ell $\\n -core index\",\"authors\":\"Eleanor Mcspirit, K. Ono\",\"doi\":\"10.4153/S0008439522000443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$\\\\mathcal {C}_n =\\\\left [\\\\chi _{\\\\lambda }(\\\\mu )\\\\right ]_{\\\\lambda , \\\\mu }$\\n be the character table for \\n$S_n,$\\n where the indices \\n$\\\\lambda $\\n and \\n$\\\\mu $\\n run over the \\n$p(n)$\\n many integer partitions of \\n$n.$\\n In this note, we study \\n$Z_{\\\\ell }(n),$\\n the number of zero entries \\n$\\\\chi _{\\\\lambda }(\\\\mu )$\\n in \\n$\\\\mathcal {C}_n,$\\n where \\n$\\\\lambda $\\n is an \\n$\\\\ell $\\n -core partition of \\n$n.$\\n For every prime \\n$\\\\ell \\\\geq 5,$\\n we prove an asymptotic formula of the form \\n$$ \\\\begin{align*}Z_{\\\\ell}(n)\\\\sim \\\\alpha_{\\\\ell}\\\\cdot \\\\sigma_{\\\\ell}(n+\\\\delta_{\\\\ell})p(n)\\\\gg_{\\\\ell} n^{\\\\frac{\\\\ell-5}{2}}e^{\\\\pi\\\\sqrt{2n/3}}, \\\\end{align*} $$\\n where \\n$\\\\sigma _{\\\\ell }(n)$\\n is a twisted Legendre symbol divisor function, \\n$\\\\delta _{\\\\ell }:=(\\\\ell ^2-1)/24,$\\n and \\n$1/\\\\alpha _{\\\\ell }>0$\\n is a normalization of the Dirichlet L-value \\n$L\\\\left (\\\\left ( \\\\frac {\\\\cdot }{\\\\ell } \\\\right ),\\\\frac {\\\\ell -1}{2}\\\\right ).$\\n For primes \\n$\\\\ell $\\n and \\n$n>\\\\ell ^6/24,$\\n we show that \\n$\\\\chi _{\\\\lambda }(\\\\mu )=0$\\n whenever \\n$\\\\lambda $\\n and \\n$\\\\mu $\\n are both \\n$\\\\ell $\\n -cores. Furthermore, if \\n$Z^*_{\\\\ell }(n)$\\n is the number of zero entries indexed by two \\n$\\\\ell $\\n -cores, then, for \\n$\\\\ell \\\\geq 5$\\n , we obtain the asymptotic \\n$$ \\\\begin{align*}Z^*_{\\\\ell}(n)\\\\sim \\\\alpha_{\\\\ell}^2 \\\\cdot \\\\sigma_{\\\\ell}( n+\\\\delta_{\\\\ell})^2 \\\\gg_{\\\\ell} n^{\\\\ell-3}. \\\\end{align*} $$\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"66 1\",\"pages\":\"467 - 476\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439522000443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Zeros in the character tables of symmetric groups with an
$\ell $
-core index
Abstract Let
$\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$
be the character table for
$S_n,$
where the indices
$\lambda $
and
$\mu $
run over the
$p(n)$
many integer partitions of
$n.$
In this note, we study
$Z_{\ell }(n),$
the number of zero entries
$\chi _{\lambda }(\mu )$
in
$\mathcal {C}_n,$
where
$\lambda $
is an
$\ell $
-core partition of
$n.$
For every prime
$\ell \geq 5,$
we prove an asymptotic formula of the form
$$ \begin{align*}Z_{\ell}(n)\sim \alpha_{\ell}\cdot \sigma_{\ell}(n+\delta_{\ell})p(n)\gg_{\ell} n^{\frac{\ell-5}{2}}e^{\pi\sqrt{2n/3}}, \end{align*} $$
where
$\sigma _{\ell }(n)$
is a twisted Legendre symbol divisor function,
$\delta _{\ell }:=(\ell ^2-1)/24,$
and
$1/\alpha _{\ell }>0$
is a normalization of the Dirichlet L-value
$L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$
For primes
$\ell $
and
$n>\ell ^6/24,$
we show that
$\chi _{\lambda }(\mu )=0$
whenever
$\lambda $
and
$\mu $
are both
$\ell $
-cores. Furthermore, if
$Z^*_{\ell }(n)$
is the number of zero entries indexed by two
$\ell $
-cores, then, for
$\ell \geq 5$
, we obtain the asymptotic
$$ \begin{align*}Z^*_{\ell}(n)\sim \alpha_{\ell}^2 \cdot \sigma_{\ell}( n+\delta_{\ell})^2 \gg_{\ell} n^{\ell-3}. \end{align*} $$
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.