具有$\ell$核心索引的对称群的字符表中的零

IF 0.5 4区 数学 Q3 MATHEMATICS
Eleanor Mcspirit, K. Ono
{"title":"具有$\\ell$核心索引的对称群的字符表中的零","authors":"Eleanor Mcspirit, K. Ono","doi":"10.4153/S0008439522000443","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$\\mathcal {C}_n =\\left [\\chi _{\\lambda }(\\mu )\\right ]_{\\lambda , \\mu }$\n be the character table for \n$S_n,$\n where the indices \n$\\lambda $\n and \n$\\mu $\n run over the \n$p(n)$\n many integer partitions of \n$n.$\n In this note, we study \n$Z_{\\ell }(n),$\n the number of zero entries \n$\\chi _{\\lambda }(\\mu )$\n in \n$\\mathcal {C}_n,$\n where \n$\\lambda $\n is an \n$\\ell $\n -core partition of \n$n.$\n For every prime \n$\\ell \\geq 5,$\n we prove an asymptotic formula of the form \n$$ \\begin{align*}Z_{\\ell}(n)\\sim \\alpha_{\\ell}\\cdot \\sigma_{\\ell}(n+\\delta_{\\ell})p(n)\\gg_{\\ell} n^{\\frac{\\ell-5}{2}}e^{\\pi\\sqrt{2n/3}}, \\end{align*} $$\n where \n$\\sigma _{\\ell }(n)$\n is a twisted Legendre symbol divisor function, \n$\\delta _{\\ell }:=(\\ell ^2-1)/24,$\n and \n$1/\\alpha _{\\ell }>0$\n is a normalization of the Dirichlet L-value \n$L\\left (\\left ( \\frac {\\cdot }{\\ell } \\right ),\\frac {\\ell -1}{2}\\right ).$\n For primes \n$\\ell $\n and \n$n>\\ell ^6/24,$\n we show that \n$\\chi _{\\lambda }(\\mu )=0$\n whenever \n$\\lambda $\n and \n$\\mu $\n are both \n$\\ell $\n -cores. Furthermore, if \n$Z^*_{\\ell }(n)$\n is the number of zero entries indexed by two \n$\\ell $\n -cores, then, for \n$\\ell \\geq 5$\n , we obtain the asymptotic \n$$ \\begin{align*}Z^*_{\\ell}(n)\\sim \\alpha_{\\ell}^2 \\cdot \\sigma_{\\ell}( n+\\delta_{\\ell})^2 \\gg_{\\ell} n^{\\ell-3}. \\end{align*} $$","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"66 1","pages":"467 - 476"},"PeriodicalIF":0.5000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zeros in the character tables of symmetric groups with an \\n$\\\\ell $\\n -core index\",\"authors\":\"Eleanor Mcspirit, K. Ono\",\"doi\":\"10.4153/S0008439522000443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$\\\\mathcal {C}_n =\\\\left [\\\\chi _{\\\\lambda }(\\\\mu )\\\\right ]_{\\\\lambda , \\\\mu }$\\n be the character table for \\n$S_n,$\\n where the indices \\n$\\\\lambda $\\n and \\n$\\\\mu $\\n run over the \\n$p(n)$\\n many integer partitions of \\n$n.$\\n In this note, we study \\n$Z_{\\\\ell }(n),$\\n the number of zero entries \\n$\\\\chi _{\\\\lambda }(\\\\mu )$\\n in \\n$\\\\mathcal {C}_n,$\\n where \\n$\\\\lambda $\\n is an \\n$\\\\ell $\\n -core partition of \\n$n.$\\n For every prime \\n$\\\\ell \\\\geq 5,$\\n we prove an asymptotic formula of the form \\n$$ \\\\begin{align*}Z_{\\\\ell}(n)\\\\sim \\\\alpha_{\\\\ell}\\\\cdot \\\\sigma_{\\\\ell}(n+\\\\delta_{\\\\ell})p(n)\\\\gg_{\\\\ell} n^{\\\\frac{\\\\ell-5}{2}}e^{\\\\pi\\\\sqrt{2n/3}}, \\\\end{align*} $$\\n where \\n$\\\\sigma _{\\\\ell }(n)$\\n is a twisted Legendre symbol divisor function, \\n$\\\\delta _{\\\\ell }:=(\\\\ell ^2-1)/24,$\\n and \\n$1/\\\\alpha _{\\\\ell }>0$\\n is a normalization of the Dirichlet L-value \\n$L\\\\left (\\\\left ( \\\\frac {\\\\cdot }{\\\\ell } \\\\right ),\\\\frac {\\\\ell -1}{2}\\\\right ).$\\n For primes \\n$\\\\ell $\\n and \\n$n>\\\\ell ^6/24,$\\n we show that \\n$\\\\chi _{\\\\lambda }(\\\\mu )=0$\\n whenever \\n$\\\\lambda $\\n and \\n$\\\\mu $\\n are both \\n$\\\\ell $\\n -cores. Furthermore, if \\n$Z^*_{\\\\ell }(n)$\\n is the number of zero entries indexed by two \\n$\\\\ell $\\n -cores, then, for \\n$\\\\ell \\\\geq 5$\\n , we obtain the asymptotic \\n$$ \\\\begin{align*}Z^*_{\\\\ell}(n)\\\\sim \\\\alpha_{\\\\ell}^2 \\\\cdot \\\\sigma_{\\\\ell}( n+\\\\delta_{\\\\ell})^2 \\\\gg_{\\\\ell} n^{\\\\ell-3}. \\\\end{align*} $$\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"66 1\",\"pages\":\"467 - 476\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439522000443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

抽象Let$\mathcal{C}_n=\left[\chi{\lambda}(\mu)\right]{\lLambda,\mu}$是$S_n,$的字符表,其中索引$\lamba$和$\mu$在$n的$p(n)$多个整数分区上运行。在本文中,我们研究$Z_{\ell}(n),$\mathcal中零项$\chi{\lambda}(\mu)$的数量{C}_n,$,其中$\lambda$是$n.$的$\ell$核心分区。对于每一个素数$\ell\geq5,$我们证明了形式为$$\boot{align*}Z_{\ell}{n)\sim\alpha_{ell}\cdot\sigma\{ell}{n+\delta_{el}p(n)\gg_{ll}n^{\frac{\ell-5}{2}}}}e^{\pi\sqrt{2n/3}}}}的n渐近公式,\ end{align*}$$$其中$\sigma{\eell}(n)$是一个扭曲的勒让德符号除数函数,$\delta{\el}:=(\ell^2-1)/24,$和$1/\alpha{\ell}>0$是Dirichlet L-值$L\left(\left)(\frac{\cdot}{\ell}\right),\frac{\ell-1}{2}\right.)的归一化$对于素数$\ell$和$n>\ell^6/24,我们证明了$\chi{\lambda}(\mu)=0$,只要$\lambda$和$\mu$都是$\ell$-核。此外,如果$Z^*{ell}(n)$是由两个$\ell-核索引的零条目的数量,那么,对于$\ell\geq5$,我们获得了渐近的$$$\boot{align*}Z^*{ell}(n)\sim\alpha_{ell}^2 \cdot\sigma_{ell}(n+\delta_{ell}})^2 3}。\结束{align*}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeros in the character tables of symmetric groups with an $\ell $ -core index
Abstract Let $\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$ be the character table for $S_n,$ where the indices $\lambda $ and $\mu $ run over the $p(n)$ many integer partitions of $n.$ In this note, we study $Z_{\ell }(n),$ the number of zero entries $\chi _{\lambda }(\mu )$ in $\mathcal {C}_n,$ where $\lambda $ is an $\ell $ -core partition of $n.$ For every prime $\ell \geq 5,$ we prove an asymptotic formula of the form $$ \begin{align*}Z_{\ell}(n)\sim \alpha_{\ell}\cdot \sigma_{\ell}(n+\delta_{\ell})p(n)\gg_{\ell} n^{\frac{\ell-5}{2}}e^{\pi\sqrt{2n/3}}, \end{align*} $$ where $\sigma _{\ell }(n)$ is a twisted Legendre symbol divisor function, $\delta _{\ell }:=(\ell ^2-1)/24,$ and $1/\alpha _{\ell }>0$ is a normalization of the Dirichlet L-value $L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$ For primes $\ell $ and $n>\ell ^6/24,$ we show that $\chi _{\lambda }(\mu )=0$ whenever $\lambda $ and $\mu $ are both $\ell $ -cores. Furthermore, if $Z^*_{\ell }(n)$ is the number of zero entries indexed by two $\ell $ -cores, then, for $\ell \geq 5$ , we obtain the asymptotic $$ \begin{align*}Z^*_{\ell}(n)\sim \alpha_{\ell}^2 \cdot \sigma_{\ell}( n+\delta_{\ell})^2 \gg_{\ell} n^{\ell-3}. \end{align*} $$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信