基于安全系数的巷道相互影响分区

IF 0.7 Q4 ENGINEERING, CIVIL
Chao KONG, Xinqiang Gao
{"title":"基于安全系数的巷道相互影响分区","authors":"Chao KONG, Xinqiang Gao","doi":"10.56748/ejse.21290","DOIUrl":null,"url":null,"abstract":"For multiple approach tunnels, the construction of the new tunnel near the existing tunnel modifies the state of stresses and movements around the existing tunnel in an area called the “influence zone”. In this study, new method is developed to optimize the relative position of approach tunnels and guide their design via the zoning of mutual influence of the approach tunnels based on a safety factor. The strength reduction method is applied to calculate the global safety factor of multiple approach tunnels in limit state. According to quantitative laws of variation in the safety factor from single tunnel to multiple tunnels, the strong influence, weak influence, and no influence have been zoning to guide the design and construction of approach tunnels. By changing the relative position of the new tunnel complex, the safety factor and failure shapes of the tunnel complex in several cases are obtained through numerical simulation. The results are based on dividing the influence zone of approach construction of the new tunnel complex. Combining the influence zone with failure shapes, the relative position of the tunnel complex is optimized. Special support countermeasures for weak tunnel complex parts and parameters of support are initially determined.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zoning of mutual influence of approach rock tunnels based on a safety factor\",\"authors\":\"Chao KONG, Xinqiang Gao\",\"doi\":\"10.56748/ejse.21290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multiple approach tunnels, the construction of the new tunnel near the existing tunnel modifies the state of stresses and movements around the existing tunnel in an area called the “influence zone”. In this study, new method is developed to optimize the relative position of approach tunnels and guide their design via the zoning of mutual influence of the approach tunnels based on a safety factor. The strength reduction method is applied to calculate the global safety factor of multiple approach tunnels in limit state. According to quantitative laws of variation in the safety factor from single tunnel to multiple tunnels, the strong influence, weak influence, and no influence have been zoning to guide the design and construction of approach tunnels. By changing the relative position of the new tunnel complex, the safety factor and failure shapes of the tunnel complex in several cases are obtained through numerical simulation. The results are based on dividing the influence zone of approach construction of the new tunnel complex. Combining the influence zone with failure shapes, the relative position of the tunnel complex is optimized. Special support countermeasures for weak tunnel complex parts and parameters of support are initially determined.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.21290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.21290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

对于多个引线隧道,在现有隧道附近建造新隧道会改变现有隧道周围一个称为“影响区”的区域的应力和运动状态。本文提出了一种基于安全系数对引线隧道相互影响进行分区的方法,以优化引线隧道的相对位置,指导引线隧道的设计。采用强度折减法计算了多隧洞在极限状态下的整体安全系数。根据安全系数从单隧道到多隧道的定量变化规律,对强影响、弱影响和无影响进行了分区,以指导引线隧道的设计和施工。通过改变新隧道综合体的相对位置,通过数值模拟得到了几种情况下隧道综合体的安全系数和破坏形态。该结果是基于对新隧道群引线施工影响区的划分。结合影响区和破坏形态,优化了隧洞综合体的相对位置。初步确定了弱隧道复杂部位的特殊支护对策和支护参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zoning of mutual influence of approach rock tunnels based on a safety factor
For multiple approach tunnels, the construction of the new tunnel near the existing tunnel modifies the state of stresses and movements around the existing tunnel in an area called the “influence zone”. In this study, new method is developed to optimize the relative position of approach tunnels and guide their design via the zoning of mutual influence of the approach tunnels based on a safety factor. The strength reduction method is applied to calculate the global safety factor of multiple approach tunnels in limit state. According to quantitative laws of variation in the safety factor from single tunnel to multiple tunnels, the strong influence, weak influence, and no influence have been zoning to guide the design and construction of approach tunnels. By changing the relative position of the new tunnel complex, the safety factor and failure shapes of the tunnel complex in several cases are obtained through numerical simulation. The results are based on dividing the influence zone of approach construction of the new tunnel complex. Combining the influence zone with failure shapes, the relative position of the tunnel complex is optimized. Special support countermeasures for weak tunnel complex parts and parameters of support are initially determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信