局部morrey型空间上Riesz势换向子的紧性

IF 0.7 Q2 MATHEMATICS
D. Matin, T. Akhazhanov, A. Adilkhanov
{"title":"局部morrey型空间上Riesz势换向子的紧性","authors":"D. Matin, T. Akhazhanov, A. Adilkhanov","doi":"10.31489/2023m2/93-103","DOIUrl":null,"url":null,"abstract":"The paper considers Morrey-type local spaces from LM^w_pθ. The main work is the proof of the commutator compactness theorem for the Riesz potential [b, I_α] in local Morrey-type spaces from LM^w1_pθ to LM^w2_qθ. We also give new sufficient conditions for the commutator to be bounded for the Riesz potential [b, I_α] in local Morrey-type spaces from LM^w1_pθ to LM^w2_qθ. In the proof of the commutator compactness theorem for the Riesz potential, we essentially use the boundedness condition for the commutator for the Riesz potential [b, Iα] in local Morrey-type spaces LM^w_pθ, and use the sufficient conditions from the theorem of precompactness of sets in local spaces of Morrey type LM^w_pθ. In the course of proving the commutator compactness theorem for the Riesz potential, we prove lemmas for the commutator ball for the Riesz potential [b, I_α]. Similar results were obtained for global Morrey-type spaces GM^w_pθ and for generalized Morrey spaces M^w_p.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactness of Commutators for Riesz Potential on Local Morrey-type spaces\",\"authors\":\"D. Matin, T. Akhazhanov, A. Adilkhanov\",\"doi\":\"10.31489/2023m2/93-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers Morrey-type local spaces from LM^w_pθ. The main work is the proof of the commutator compactness theorem for the Riesz potential [b, I_α] in local Morrey-type spaces from LM^w1_pθ to LM^w2_qθ. We also give new sufficient conditions for the commutator to be bounded for the Riesz potential [b, I_α] in local Morrey-type spaces from LM^w1_pθ to LM^w2_qθ. In the proof of the commutator compactness theorem for the Riesz potential, we essentially use the boundedness condition for the commutator for the Riesz potential [b, Iα] in local Morrey-type spaces LM^w_pθ, and use the sufficient conditions from the theorem of precompactness of sets in local spaces of Morrey type LM^w_pθ. In the course of proving the commutator compactness theorem for the Riesz potential, we prove lemmas for the commutator ball for the Riesz potential [b, I_α]. Similar results were obtained for global Morrey-type spaces GM^w_pθ and for generalized Morrey spaces M^w_p.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023m2/93-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/93-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从LM^w_pθ出发考虑morrey型局部空间。主要工作是证明了局部morrey型空间从LM^w1_pθ到LM^w2_qθ的Riesz势[b, I_α]的换向子紧性定理。我们还给出了从LM^w1_pθ到LM^w2_qθ的局部morrey型空间中Riesz势[b, I_α]换向子有界的新充分条件。在证明Riesz势的对易子紧性定理中,我们实质上利用了局部Morrey型空间LM^w_pθ中Riesz势[b, Iα]对易子的有界性条件,并利用了局部Morrey型空间LM^w_pθ中集合的预紧性定理的充分条件。在证明Riesz势的换向子紧性定理的过程中,我们证明了Riesz势的换向子球的引理[b, I_α]。对于全局Morrey型空间GM^w_pθ和广义Morrey空间M^w_p得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness of Commutators for Riesz Potential on Local Morrey-type spaces
The paper considers Morrey-type local spaces from LM^w_pθ. The main work is the proof of the commutator compactness theorem for the Riesz potential [b, I_α] in local Morrey-type spaces from LM^w1_pθ to LM^w2_qθ. We also give new sufficient conditions for the commutator to be bounded for the Riesz potential [b, I_α] in local Morrey-type spaces from LM^w1_pθ to LM^w2_qθ. In the proof of the commutator compactness theorem for the Riesz potential, we essentially use the boundedness condition for the commutator for the Riesz potential [b, Iα] in local Morrey-type spaces LM^w_pθ, and use the sufficient conditions from the theorem of precompactness of sets in local spaces of Morrey type LM^w_pθ. In the course of proving the commutator compactness theorem for the Riesz potential, we prove lemmas for the commutator ball for the Riesz potential [b, I_α]. Similar results were obtained for global Morrey-type spaces GM^w_pθ and for generalized Morrey spaces M^w_p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信