{"title":"利用图像处理技术进行腐蚀检测的先进图像处理原型","authors":"M. Malathi, P. Sinthia","doi":"10.1166/JCTN.2021.9388","DOIUrl":null,"url":null,"abstract":"The main objective of the research work is to recognize the rust of the substance with the help of Image Processing. The recognition of the rust portion of an image is carried out by quantizing of image in matrix form. The quantization process helps to perform the fundamental operation\n on image and also helps to identify the desired oxidation portion of an image. The corrosion portion was identified through the threshold operation, edge detection and segmentation. Threshold value assists to describe the types of the rust. Further the abrupt modification of colour in the\n images was captured by the edge detection method. Consequently partitioning of an image find the colour changes in the oxidized image. The corrosion portion was recognized by combining the edge recognition and partitioning process. Finally recommended methods provide the 98% accuracy to detect\n the rust.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1251-1255"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Advanced Image Processing Prototype for Corrosion Finding Using Image Processing\",\"authors\":\"M. Malathi, P. Sinthia\",\"doi\":\"10.1166/JCTN.2021.9388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of the research work is to recognize the rust of the substance with the help of Image Processing. The recognition of the rust portion of an image is carried out by quantizing of image in matrix form. The quantization process helps to perform the fundamental operation\\n on image and also helps to identify the desired oxidation portion of an image. The corrosion portion was identified through the threshold operation, edge detection and segmentation. Threshold value assists to describe the types of the rust. Further the abrupt modification of colour in the\\n images was captured by the edge detection method. Consequently partitioning of an image find the colour changes in the oxidized image. The corrosion portion was recognized by combining the edge recognition and partitioning process. Finally recommended methods provide the 98% accuracy to detect\\n the rust.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"18 1\",\"pages\":\"1251-1255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2021.9388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
An Advanced Image Processing Prototype for Corrosion Finding Using Image Processing
The main objective of the research work is to recognize the rust of the substance with the help of Image Processing. The recognition of the rust portion of an image is carried out by quantizing of image in matrix form. The quantization process helps to perform the fundamental operation
on image and also helps to identify the desired oxidation portion of an image. The corrosion portion was identified through the threshold operation, edge detection and segmentation. Threshold value assists to describe the types of the rust. Further the abrupt modification of colour in the
images was captured by the edge detection method. Consequently partitioning of an image find the colour changes in the oxidized image. The corrosion portion was recognized by combining the edge recognition and partitioning process. Finally recommended methods provide the 98% accuracy to detect
the rust.