三次项Kirchhoff型问题的多节点解

IF 3.2 1区 数学 Q1 MATHEMATICS
Tao Wang, Yanling Yang, Hui Guo
{"title":"三次项Kirchhoff型问题的多节点解","authors":"Tao Wang, Yanling Yang, Hui Guo","doi":"10.1515/anona-2022-0225","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , \\left\\{\\begin{array}{l}-\\left(a+b\\mathop{\\displaystyle \\int }\\limits_{{{\\mathbb{R}}}^{N}}| \\nabla u\\hspace{-0.25em}{| }^{2}{\\rm{d}}x\\right)\\Delta u+V\\left(| x| )u=| u\\hspace{-0.25em}{| }^{2}u\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\\\ u\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}),\\end{array}\\right. where a , b > 0 , N = 2 a,b\\gt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| \\nabla u\\hspace{-0.25em}{| }_{{L}^{2}\\left({{\\mathbb{R}}}^{N})}^{2}\\Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | u\\hspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}\\left({{\\mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } \\left\\{{b}_{n}\\right\\} with b n → 0 + , {b}_{n}\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}\\left({{\\mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . \\left\\{\\begin{array}{l}-a\\Delta u+V\\left(| x| )u=| u\\hspace{-0.25em}{| }^{2}u\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\\\ u\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}).\\end{array}\\right. Our results extend the existence result from the super-cubic case to the cubic case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1030 - 1047"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiple nodal solutions of the Kirchhoff-type problem with a cubic term\",\"authors\":\"Tao Wang, Yanling Yang, Hui Guo\",\"doi\":\"10.1515/anona-2022-0225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , \\\\left\\\\{\\\\begin{array}{l}-\\\\left(a+b\\\\mathop{\\\\displaystyle \\\\int }\\\\limits_{{{\\\\mathbb{R}}}^{N}}| \\\\nabla u\\\\hspace{-0.25em}{| }^{2}{\\\\rm{d}}x\\\\right)\\\\Delta u+V\\\\left(| x| )u=| u\\\\hspace{-0.25em}{| }^{2}u\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N},\\\\\\\\ u\\\\in {H}^{1}\\\\left({{\\\\mathbb{R}}}^{N}),\\\\end{array}\\\\right. where a , b > 0 , N = 2 a,b\\\\gt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| \\\\nabla u\\\\hspace{-0.25em}{| }_{{L}^{2}\\\\left({{\\\\mathbb{R}}}^{N})}^{2}\\\\Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | u\\\\hspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}\\\\left({{\\\\mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } \\\\left\\\\{{b}_{n}\\\\right\\\\} with b n → 0 + , {b}_{n}\\\\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}\\\\left({{\\\\mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . \\\\left\\\\{\\\\begin{array}{l}-a\\\\Delta u+V\\\\left(| x| )u=| u\\\\hspace{-0.25em}{| }^{2}u\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N},\\\\\\\\ u\\\\in {H}^{1}\\\\left({{\\\\mathbb{R}}}^{N}).\\\\end{array}\\\\right. Our results extend the existence result from the super-cubic case to the cubic case.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1030 - 1047\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0225\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0225","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们对以下kirchhoff型问题(0.1)−a + b∫R N∣∇u∣2d x Δ u + V(∣x∣)u =∣u∣2u In R N, u∈h1 (R N), \left {\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}| \nabla u\hspace{-0.25em}{| }^{2}{\rm{d}}x\right)\Delta u+V\left(| x| )u=| u\hspace{-0.25em}{| }^{2}u\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}),\end{array}\right感兴趣。其中,a,b > 0,N=2, a,b \gt 0,N=2或3,势函数V V是径向的,从下面开始有一个正数。因为非局部的b∣∇u∣l2 (R N) 2 Δ u b| \nabla u_L\hspace{-0.25em}{| }^{{2 }{}\left ({{\mathbb{R}}} ^{N})}^{2 }\Delta u是3齐次的这与非线性项∣u∣2u | u\hspace{-0.25em}{| }^{2u是复杂的竞争关系。这导致不是所有在h1 (rn) H}^{1}{}\left ({{\mathbb{R}}} ^{N})中的函数都可以投影到Nehari流形上,因此经典的Nehari流形方法不起作用。通过引入Gersgorin圆盘定理和Miranda定理,通过极限逼近和精细分析,证明了对于每一个正整数k k,方程(0.1)承认一个径向节点解U k, 4b U {k,4}^{b}恰好有k k个节点。此外,我们证明了uk, 4b {U_k},4{^}b{的能量在k k中是严格递增的,对于任意序列}b n{}{}\left {{b_n}{}\right},当b n→0 +,{b_n}{}\to 0_{+}时,直到一个子序列,uk, 4b n {U_k},4{^}b_n{收敛于uk, 40 }U_k{{,4}^b_n在H 1 (R n) {H}}^{1}{}{}{}{}\left ({{\mathbb{R}}} ^ {n}),这是经典Schrödinger方程- a Δ U + V(∣x∣)U =∣U∣2u在R n, U∈H 1 (R n)中具有精确k个节点的径向节点解。\left {\begin{array}{l}-a\Delta u+V\left(| x| )u=| u\hspace{-0.25em}{| }^{2}u\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}).\end{array}\right。我们的结果将超三次情况下的存在性结果推广到三次情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple nodal solutions of the Kirchhoff-type problem with a cubic term
Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , \left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}| \nabla u\hspace{-0.25em}{| }^{2}{\rm{d}}x\right)\Delta u+V\left(| x| )u=| u\hspace{-0.25em}{| }^{2}u\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}),\end{array}\right. where a , b > 0 , N = 2 a,b\gt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| \nabla u\hspace{-0.25em}{| }_{{L}^{2}\left({{\mathbb{R}}}^{N})}^{2}\Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | u\hspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}\left({{\mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } \left\{{b}_{n}\right\} with b n → 0 + , {b}_{n}\to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}\left({{\mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . \left\{\begin{array}{l}-a\Delta u+V\left(| x| )u=| u\hspace{-0.25em}{| }^{2}u\hspace{1.0em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ u\in {H}^{1}\left({{\mathbb{R}}}^{N}).\end{array}\right. Our results extend the existence result from the super-cubic case to the cubic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信