A. Stankovic, G. Petrovic, Ž. Ćojbašić, D. Markovic
{"title":"元启发式优化算法在柔性作业车间调度问题中的应用","authors":"A. Stankovic, G. Petrovic, Ž. Ćojbašić, D. Markovic","doi":"10.31181/oresta20303013s","DOIUrl":null,"url":null,"abstract":"The Flexible Job Shop Planning (FJSP) problem is another planning and scheduling problem. It is a continuation of the classic problem of scheduling jobs, where each operation can be performed on different machines, while the processing time depends on the machine being used. FJSP is a difficult NP problem that consists of two sub-problems, scheduling problems and scheduling operations. The paper presents a model for solving FJSP based on meta-heuristic algorithms: Genetic algorithm (GA), Tabu search (TS) and Ant colony optimization (ACO). The efficiency of the approach in solving the aforementioned problem is reflected in the flexible search of space and the choice of dominant solutions. The results of the computation are graphically represented on the Gantt chart.","PeriodicalId":36055,"journal":{"name":"Operational Research in Engineering Sciences: Theory and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"AN APPLICATION OF METAHEURISTIC OPTIMIZATION ALGORITHMS FOR SOLVING THE FLEXIBLE JOB-SHOP SCHEDULING PROBLEM\",\"authors\":\"A. Stankovic, G. Petrovic, Ž. Ćojbašić, D. Markovic\",\"doi\":\"10.31181/oresta20303013s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Flexible Job Shop Planning (FJSP) problem is another planning and scheduling problem. It is a continuation of the classic problem of scheduling jobs, where each operation can be performed on different machines, while the processing time depends on the machine being used. FJSP is a difficult NP problem that consists of two sub-problems, scheduling problems and scheduling operations. The paper presents a model for solving FJSP based on meta-heuristic algorithms: Genetic algorithm (GA), Tabu search (TS) and Ant colony optimization (ACO). The efficiency of the approach in solving the aforementioned problem is reflected in the flexible search of space and the choice of dominant solutions. The results of the computation are graphically represented on the Gantt chart.\",\"PeriodicalId\":36055,\"journal\":{\"name\":\"Operational Research in Engineering Sciences: Theory and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operational Research in Engineering Sciences: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31181/oresta20303013s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operational Research in Engineering Sciences: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/oresta20303013s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
AN APPLICATION OF METAHEURISTIC OPTIMIZATION ALGORITHMS FOR SOLVING THE FLEXIBLE JOB-SHOP SCHEDULING PROBLEM
The Flexible Job Shop Planning (FJSP) problem is another planning and scheduling problem. It is a continuation of the classic problem of scheduling jobs, where each operation can be performed on different machines, while the processing time depends on the machine being used. FJSP is a difficult NP problem that consists of two sub-problems, scheduling problems and scheduling operations. The paper presents a model for solving FJSP based on meta-heuristic algorithms: Genetic algorithm (GA), Tabu search (TS) and Ant colony optimization (ACO). The efficiency of the approach in solving the aforementioned problem is reflected in the flexible search of space and the choice of dominant solutions. The results of the computation are graphically represented on the Gantt chart.