状态分类错误的渐进式多状态模型分析:似然与两两似然方法

Q3 Medicine
G. Yi, Wenqing He, Feng He
{"title":"状态分类错误的渐进式多状态模型分析:似然与两两似然方法","authors":"G. Yi, Wenqing He, Feng He","doi":"10.1080/24709360.2017.1359356","DOIUrl":null,"url":null,"abstract":"ABSTRACT Multi-state models are commonly used in studies of disease progression. Methods developed under this framework, however, are often challenged by misclassification in states. In this article, we investigate issues concerning continuous-time progressive multi-state models with state misclassification. We develop inference methods using both the likelihood and pairwise likelihood methods that are based on joint modelling of the progressive and misclassification processes. We assess the performance of the proposed methods by simulation studies, and illustrate their use by the application to the data arising from a coronary allograft vasculopathy study.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"1 1","pages":"119 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2017.1359356","citationCount":"0","resultStr":"{\"title\":\"Analysis of progressive multi-state models with misclassified states: likelihood and pairwise likelihood methods\",\"authors\":\"G. Yi, Wenqing He, Feng He\",\"doi\":\"10.1080/24709360.2017.1359356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Multi-state models are commonly used in studies of disease progression. Methods developed under this framework, however, are often challenged by misclassification in states. In this article, we investigate issues concerning continuous-time progressive multi-state models with state misclassification. We develop inference methods using both the likelihood and pairwise likelihood methods that are based on joint modelling of the progressive and misclassification processes. We assess the performance of the proposed methods by simulation studies, and illustrate their use by the application to the data arising from a coronary allograft vasculopathy study.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"1 1\",\"pages\":\"119 - 132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2017.1359356\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2017.1359356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2017.1359356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

多状态模型常用于疾病进展的研究。然而,在这一框架下开发的方法经常受到各州分类错误的挑战。本文研究了具有状态误分类的连续时间渐进多状态模型问题。我们使用基于渐进和错误分类过程的联合建模的似然和成对似然方法开发推理方法。我们通过模拟研究评估所提出的方法的性能,并通过应用于冠状动脉异体移植血管病变研究的数据来说明它们的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of progressive multi-state models with misclassified states: likelihood and pairwise likelihood methods
ABSTRACT Multi-state models are commonly used in studies of disease progression. Methods developed under this framework, however, are often challenged by misclassification in states. In this article, we investigate issues concerning continuous-time progressive multi-state models with state misclassification. We develop inference methods using both the likelihood and pairwise likelihood methods that are based on joint modelling of the progressive and misclassification processes. We assess the performance of the proposed methods by simulation studies, and illustrate their use by the application to the data arising from a coronary allograft vasculopathy study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信