{"title":"状态分类错误的渐进式多状态模型分析:似然与两两似然方法","authors":"G. Yi, Wenqing He, Feng He","doi":"10.1080/24709360.2017.1359356","DOIUrl":null,"url":null,"abstract":"ABSTRACT Multi-state models are commonly used in studies of disease progression. Methods developed under this framework, however, are often challenged by misclassification in states. In this article, we investigate issues concerning continuous-time progressive multi-state models with state misclassification. We develop inference methods using both the likelihood and pairwise likelihood methods that are based on joint modelling of the progressive and misclassification processes. We assess the performance of the proposed methods by simulation studies, and illustrate their use by the application to the data arising from a coronary allograft vasculopathy study.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"1 1","pages":"119 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2017.1359356","citationCount":"0","resultStr":"{\"title\":\"Analysis of progressive multi-state models with misclassified states: likelihood and pairwise likelihood methods\",\"authors\":\"G. Yi, Wenqing He, Feng He\",\"doi\":\"10.1080/24709360.2017.1359356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Multi-state models are commonly used in studies of disease progression. Methods developed under this framework, however, are often challenged by misclassification in states. In this article, we investigate issues concerning continuous-time progressive multi-state models with state misclassification. We develop inference methods using both the likelihood and pairwise likelihood methods that are based on joint modelling of the progressive and misclassification processes. We assess the performance of the proposed methods by simulation studies, and illustrate their use by the application to the data arising from a coronary allograft vasculopathy study.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"1 1\",\"pages\":\"119 - 132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2017.1359356\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2017.1359356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2017.1359356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Analysis of progressive multi-state models with misclassified states: likelihood and pairwise likelihood methods
ABSTRACT Multi-state models are commonly used in studies of disease progression. Methods developed under this framework, however, are often challenged by misclassification in states. In this article, we investigate issues concerning continuous-time progressive multi-state models with state misclassification. We develop inference methods using both the likelihood and pairwise likelihood methods that are based on joint modelling of the progressive and misclassification processes. We assess the performance of the proposed methods by simulation studies, and illustrate their use by the application to the data arising from a coronary allograft vasculopathy study.