图像去噪与亮度调整同步的变分模型

IF 1.2 Q2 MATHEMATICS, APPLIED
Wei Wang null, Ruofan Liu
{"title":"图像去噪与亮度调整同步的变分模型","authors":"Wei Wang null, Ruofan Liu","doi":"10.4208/csiam-am.so-2021-0037","DOIUrl":null,"url":null,"abstract":". In this paper, we propose and develop a saturation value total variation (SV-TV) regularization model for simultaneously image denoising and luminance adjustment. The idea is to propose a variational approach containing an energy functional to adjust the luminance between image patches, and the noise of the image can be removed. In the proposed model, we establish the adjustment term based on the concept of structure, luminance, and contrast similarity, and we make use of the SV-TV regularization to remove the noise simultaneously. We present an efficient and effective algorithm with convergence guaranteed to solve the proposed minimization model. Experimental results are presented to show the effectiveness of the proposed model compared with existing methods.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Variational Model for Simultaneously Image Denoising and Luminance Adjustment\",\"authors\":\"Wei Wang null, Ruofan Liu\",\"doi\":\"10.4208/csiam-am.so-2021-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we propose and develop a saturation value total variation (SV-TV) regularization model for simultaneously image denoising and luminance adjustment. The idea is to propose a variational approach containing an energy functional to adjust the luminance between image patches, and the noise of the image can be removed. In the proposed model, we establish the adjustment term based on the concept of structure, luminance, and contrast similarity, and we make use of the SV-TV regularization to remove the noise simultaneously. We present an efficient and effective algorithm with convergence guaranteed to solve the proposed minimization model. Experimental results are presented to show the effectiveness of the proposed model compared with existing methods.\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.so-2021-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2021-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出并开发了一个饱和值全变分(SV-TV)正则化模型,用于同时进行图像去噪和亮度调整。其思想是提出一种包含能量函数的变分方法来调整图像块之间的亮度,并且可以去除图像的噪声。在所提出的模型中,我们基于结构、亮度和对比度相似性的概念建立了调整项,并利用SV-TV正则化来同时去除噪声。我们提出了一种有效且有收敛性保证的算法来求解所提出的最小化模型。实验结果表明,与现有方法相比,该模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Variational Model for Simultaneously Image Denoising and Luminance Adjustment
. In this paper, we propose and develop a saturation value total variation (SV-TV) regularization model for simultaneously image denoising and luminance adjustment. The idea is to propose a variational approach containing an energy functional to adjust the luminance between image patches, and the noise of the image can be removed. In the proposed model, we establish the adjustment term based on the concept of structure, luminance, and contrast similarity, and we make use of the SV-TV regularization to remove the noise simultaneously. We present an efficient and effective algorithm with convergence guaranteed to solve the proposed minimization model. Experimental results are presented to show the effectiveness of the proposed model compared with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信