{"title":"具有Neumann条件的有界域上的主方程","authors":"M. Ricciardi","doi":"10.1080/03605302.2021.2008965","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the well-posedness of the Master Equation of Mean Field Games in a framework of Neumann boundary condition. The definition of solution is closely related to the classical one of the Mean Field Games system, but the boundary condition here leads to two Neumann conditions in the Master Equation formulation, for both space and measure. The global regularity of the linearized system, which is crucial in order to prove the existence of solutions, is obtained with a deep study of the boundary conditions and the global regularity at the boundary of a suitable class of parabolic equations.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"912 - 947"},"PeriodicalIF":2.1000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Master Equation in a bounded domain with Neumann conditions\",\"authors\":\"M. Ricciardi\",\"doi\":\"10.1080/03605302.2021.2008965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the well-posedness of the Master Equation of Mean Field Games in a framework of Neumann boundary condition. The definition of solution is closely related to the classical one of the Mean Field Games system, but the boundary condition here leads to two Neumann conditions in the Master Equation formulation, for both space and measure. The global regularity of the linearized system, which is crucial in order to prove the existence of solutions, is obtained with a deep study of the boundary conditions and the global regularity at the boundary of a suitable class of parabolic equations.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"912 - 947\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2021.2008965\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2021.2008965","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Master Equation in a bounded domain with Neumann conditions
Abstract In this article, we study the well-posedness of the Master Equation of Mean Field Games in a framework of Neumann boundary condition. The definition of solution is closely related to the classical one of the Mean Field Games system, but the boundary condition here leads to two Neumann conditions in the Master Equation formulation, for both space and measure. The global regularity of the linearized system, which is crucial in order to prove the existence of solutions, is obtained with a deep study of the boundary conditions and the global regularity at the boundary of a suitable class of parabolic equations.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.