具有Neumann条件的有界域上的主方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Ricciardi
{"title":"具有Neumann条件的有界域上的主方程","authors":"M. Ricciardi","doi":"10.1080/03605302.2021.2008965","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the well-posedness of the Master Equation of Mean Field Games in a framework of Neumann boundary condition. The definition of solution is closely related to the classical one of the Mean Field Games system, but the boundary condition here leads to two Neumann conditions in the Master Equation formulation, for both space and measure. The global regularity of the linearized system, which is crucial in order to prove the existence of solutions, is obtained with a deep study of the boundary conditions and the global regularity at the boundary of a suitable class of parabolic equations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Master Equation in a bounded domain with Neumann conditions\",\"authors\":\"M. Ricciardi\",\"doi\":\"10.1080/03605302.2021.2008965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the well-posedness of the Master Equation of Mean Field Games in a framework of Neumann boundary condition. The definition of solution is closely related to the classical one of the Mean Field Games system, but the boundary condition here leads to two Neumann conditions in the Master Equation formulation, for both space and measure. The global regularity of the linearized system, which is crucial in order to prove the existence of solutions, is obtained with a deep study of the boundary conditions and the global regularity at the boundary of a suitable class of parabolic equations.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2021.2008965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2021.2008965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文在Neumann边界条件的框架下研究了平均场对策主方程的适定性。解的定义与平均场对策系统的经典定义密切相关,但这里的边界条件导致了主方程公式中的两个Neumann条件,即空间和测度。通过深入研究一类合适的抛物型方程的边界条件和边界上的全局正则性,得到了线性化系统的全局正则化,这对于证明解的存在性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Master Equation in a bounded domain with Neumann conditions
Abstract In this article, we study the well-posedness of the Master Equation of Mean Field Games in a framework of Neumann boundary condition. The definition of solution is closely related to the classical one of the Mean Field Games system, but the boundary condition here leads to two Neumann conditions in the Master Equation formulation, for both space and measure. The global regularity of the linearized system, which is crucial in order to prove the existence of solutions, is obtained with a deep study of the boundary conditions and the global regularity at the boundary of a suitable class of parabolic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信