局部核算子子代数的逆闭性

Pub Date : 2023-02-28 DOI:10.1007/s10476-023-0194-6
E. Yu. Guseva, V. G. Kurbatov
{"title":"局部核算子子代数的逆闭性","authors":"E. Yu. Guseva,&nbsp;V. G. Kurbatov","doi":"10.1007/s10476-023-0194-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a Banach space and <i>T</i> be a bounded linear operator acting in <i>l</i><sub><i>p</i></sub>(ℤ<sup><i>c</i></sup>,<i>X</i>), 1 ≤ <i>p</i> ≤ ∞. The operator <i>T</i> is called <i>locally nuclear</i> if it can be represented in the form </p><div><div><span>$${(Tx)_k} = \\sum\\limits_{m \\in {\\mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},\\quad k \\in {\\mathbb{Z}^c},$$</span></div></div><p> where <i>b</i><sub><i>km</i></sub>: <i>X</i> → <i>X</i> are nuclear, </p><div><div><span>$${\\left\\| {{b_{km}}} \\right\\|_{{\\mathfrak{S}_1}}} \\le {\\beta _m},\\quad k,m \\in {\\mathbb{Z}^c},$$</span></div></div><p><span>\\(\\left\\|\\cdot\\right\\|{_{{\\mathfrak{S}_1}}}\\)</span> is the nuclear norm, <i>β</i> ∈ <i>l</i><sub>1</sub>(ℤ<sup><i>c</i></sup>,ℂ) or <i>β</i> ∈ <i>l</i><sub>1,<i>g</i></sub>(ℤ<sup><i>c</i></sup>,ℂ), and <i>g</i> is an appropriate weight on ℤ<sup><i>c</i></sup>. It is established that if <i>T</i> is locally nuclear and the operator 1 + <i>T</i> is invertible, then the inverse operator (1 + <i>T</i>)<sup>−1</sup> has the form 1 + <i>T</i><sub>1</sub>, where <i>T</i><sub>1</sub> is also locally nuclear. This result is refined for the case of operators acting in <i>L</i><sub><i>p</i></sub> (ℝ<sup><i>c</i></sup>,ℂ).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0194-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Inverse-closedness of the subalgebra of locally nuclear operators\",\"authors\":\"E. Yu. Guseva,&nbsp;V. G. Kurbatov\",\"doi\":\"10.1007/s10476-023-0194-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> be a Banach space and <i>T</i> be a bounded linear operator acting in <i>l</i><sub><i>p</i></sub>(ℤ<sup><i>c</i></sup>,<i>X</i>), 1 ≤ <i>p</i> ≤ ∞. The operator <i>T</i> is called <i>locally nuclear</i> if it can be represented in the form </p><div><div><span>$${(Tx)_k} = \\\\sum\\\\limits_{m \\\\in {\\\\mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},\\\\quad k \\\\in {\\\\mathbb{Z}^c},$$</span></div></div><p> where <i>b</i><sub><i>km</i></sub>: <i>X</i> → <i>X</i> are nuclear, </p><div><div><span>$${\\\\left\\\\| {{b_{km}}} \\\\right\\\\|_{{\\\\mathfrak{S}_1}}} \\\\le {\\\\beta _m},\\\\quad k,m \\\\in {\\\\mathbb{Z}^c},$$</span></div></div><p><span>\\\\(\\\\left\\\\|\\\\cdot\\\\right\\\\|{_{{\\\\mathfrak{S}_1}}}\\\\)</span> is the nuclear norm, <i>β</i> ∈ <i>l</i><sub>1</sub>(ℤ<sup><i>c</i></sup>,ℂ) or <i>β</i> ∈ <i>l</i><sub>1,<i>g</i></sub>(ℤ<sup><i>c</i></sup>,ℂ), and <i>g</i> is an appropriate weight on ℤ<sup><i>c</i></sup>. It is established that if <i>T</i> is locally nuclear and the operator 1 + <i>T</i> is invertible, then the inverse operator (1 + <i>T</i>)<sup>−1</sup> has the form 1 + <i>T</i><sub>1</sub>, where <i>T</i><sub>1</sub> is also locally nuclear. This result is refined for the case of operators acting in <i>L</i><sub><i>p</i></sub> (ℝ<sup><i>c</i></sup>,ℂ).</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0194-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0194-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0194-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设X是Banach空间,T是作用于lp的有界线性算子(ℤc、 X),1≤p≤∞。如果算子T可以表示为$${(Tx)_k}=\sum\limits_{m\in{\mathbb{Z}^c}}{b_{km}}{x_{k-m}}},\quad k\in{\mathbb{Z}^ c},$$其中bkm:x→ X是核能,$${S}_1}}}{\beta_m},quad k,m\in{\mathbb{Z}^c},$$\(\left{S}_1}}}\)是核范数,β∈l1(ℤcℂ) 或β∈l1,g(ℤcℂ), g是ℤc.建立了如果T是局部核的,并且算子1+T是可逆的,那么逆算子(1+T)−1的形式为1+T1,其中T1也是局部核的。此结果是针对运算符在Lp中操作的情况而改进的(ℝcℂ).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inverse-closedness of the subalgebra of locally nuclear operators

Let X be a Banach space and T be a bounded linear operator acting in lp(ℤc,X), 1 ≤ p ≤ ∞. The operator T is called locally nuclear if it can be represented in the form

$${(Tx)_k} = \sum\limits_{m \in {\mathbb{Z}^c}} {{b_{km}}} {x_{k - m}},\quad k \in {\mathbb{Z}^c},$$

where bkm: XX are nuclear,

$${\left\| {{b_{km}}} \right\|_{{\mathfrak{S}_1}}} \le {\beta _m},\quad k,m \in {\mathbb{Z}^c},$$

\(\left\|\cdot\right\|{_{{\mathfrak{S}_1}}}\) is the nuclear norm, βl1(ℤc,ℂ) or βl1,g(ℤc,ℂ), and g is an appropriate weight on ℤc. It is established that if T is locally nuclear and the operator 1 + T is invertible, then the inverse operator (1 + T)−1 has the form 1 + T1, where T1 is also locally nuclear. This result is refined for the case of operators acting in Lp (ℝc,ℂ).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信