{"title":"由一类有重叠的自相似测度定义的分形拉普拉斯算子的Weyl渐近公式","authors":"W. Tang, Z. Y. Wang","doi":"10.1007/s10476-023-0222-6","DOIUrl":null,"url":null,"abstract":"<div><p>We observe that some self-similar measures that we call essentially of finite type satisfy countable measure type condition. We make use of this condition to set up a framework to obtain a precise analog of Weyl’s asymptotic formula for the eigenvalue counting function of Laplacians defined by measures, emphasizing on one-dimensional self-similar measures with overlaps. As an application of our result, we obtain an analog of a semi-classical asymptotic formula for the number of negative eigenvalues of fractal Schrödinger operators as the parameter tends to infinity.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0222-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Weyl’s asymptotic formula for fractal Laplacians defined by a class of self-similar measures with overlaps\",\"authors\":\"W. Tang, Z. Y. Wang\",\"doi\":\"10.1007/s10476-023-0222-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We observe that some self-similar measures that we call essentially of finite type satisfy countable measure type condition. We make use of this condition to set up a framework to obtain a precise analog of Weyl’s asymptotic formula for the eigenvalue counting function of Laplacians defined by measures, emphasizing on one-dimensional self-similar measures with overlaps. As an application of our result, we obtain an analog of a semi-classical asymptotic formula for the number of negative eigenvalues of fractal Schrödinger operators as the parameter tends to infinity.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-023-0222-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0222-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0222-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weyl’s asymptotic formula for fractal Laplacians defined by a class of self-similar measures with overlaps
We observe that some self-similar measures that we call essentially of finite type satisfy countable measure type condition. We make use of this condition to set up a framework to obtain a precise analog of Weyl’s asymptotic formula for the eigenvalue counting function of Laplacians defined by measures, emphasizing on one-dimensional self-similar measures with overlaps. As an application of our result, we obtain an analog of a semi-classical asymptotic formula for the number of negative eigenvalues of fractal Schrödinger operators as the parameter tends to infinity.