Oliver Schwahofer, Sascha Büttner, David Colin, Klaus Drechsler
{"title":"基于梁的晶格单元结构的定制弹性特性","authors":"Oliver Schwahofer, Sascha Büttner, David Colin, Klaus Drechsler","doi":"10.1007/s10999-023-09659-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a structural optimization framework is developed to design three-dimensional periodic lattice unit cells that meets specific mechanical requirements. The work is motivated by the high design freedom of additive manufacturing technologies, which enable complex multiscale lattice structures to be printed. An optimized lattice unit cell delivers desired orthotropic elastic material properties, providing a tailored metamaterial. The design variables are the coordinates of lattice skeleton nodes defined within the three-dimensional lattice cell space, and the connectivities between them resulting a strut-skeleton. Genetic algorithm (GA) is combined with posterior particle swarm optimization (PSO) algorithm to establish an integrated topology and shape optimization tool. For the calculation of the elastic properties of the individual lattice cells, an effective Timoshenko beam-based finite element calculation method was developed. The novelty of the work stems from its free topology optimization nature, excluding the strut diameters from the optimization variables. The method is demonstrated by four lattice cell optimization cases, where extreme orthotropic elastic properties were targeted and achieved. The tailored lattice cells represent a metamaterial, that can be used to build a structural component on the macroscopic scale, by stacking the cells periodically together, to fill the macroscopic 3D design space. This framework is a strong basis that can be extended to meet further nonlinear metamaterial requirements, such as energy absorption.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"927 - 949"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored elastic properties of beam-based lattice unit structures\",\"authors\":\"Oliver Schwahofer, Sascha Büttner, David Colin, Klaus Drechsler\",\"doi\":\"10.1007/s10999-023-09659-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper a structural optimization framework is developed to design three-dimensional periodic lattice unit cells that meets specific mechanical requirements. The work is motivated by the high design freedom of additive manufacturing technologies, which enable complex multiscale lattice structures to be printed. An optimized lattice unit cell delivers desired orthotropic elastic material properties, providing a tailored metamaterial. The design variables are the coordinates of lattice skeleton nodes defined within the three-dimensional lattice cell space, and the connectivities between them resulting a strut-skeleton. Genetic algorithm (GA) is combined with posterior particle swarm optimization (PSO) algorithm to establish an integrated topology and shape optimization tool. For the calculation of the elastic properties of the individual lattice cells, an effective Timoshenko beam-based finite element calculation method was developed. The novelty of the work stems from its free topology optimization nature, excluding the strut diameters from the optimization variables. The method is demonstrated by four lattice cell optimization cases, where extreme orthotropic elastic properties were targeted and achieved. The tailored lattice cells represent a metamaterial, that can be used to build a structural component on the macroscopic scale, by stacking the cells periodically together, to fill the macroscopic 3D design space. This framework is a strong basis that can be extended to meet further nonlinear metamaterial requirements, such as energy absorption.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 4\",\"pages\":\"927 - 949\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09659-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09659-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tailored elastic properties of beam-based lattice unit structures
In this paper a structural optimization framework is developed to design three-dimensional periodic lattice unit cells that meets specific mechanical requirements. The work is motivated by the high design freedom of additive manufacturing technologies, which enable complex multiscale lattice structures to be printed. An optimized lattice unit cell delivers desired orthotropic elastic material properties, providing a tailored metamaterial. The design variables are the coordinates of lattice skeleton nodes defined within the three-dimensional lattice cell space, and the connectivities between them resulting a strut-skeleton. Genetic algorithm (GA) is combined with posterior particle swarm optimization (PSO) algorithm to establish an integrated topology and shape optimization tool. For the calculation of the elastic properties of the individual lattice cells, an effective Timoshenko beam-based finite element calculation method was developed. The novelty of the work stems from its free topology optimization nature, excluding the strut diameters from the optimization variables. The method is demonstrated by four lattice cell optimization cases, where extreme orthotropic elastic properties were targeted and achieved. The tailored lattice cells represent a metamaterial, that can be used to build a structural component on the macroscopic scale, by stacking the cells periodically together, to fill the macroscopic 3D design space. This framework is a strong basis that can be extended to meet further nonlinear metamaterial requirements, such as energy absorption.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.