R. Caruso, F. Camino, G. Gu, J. Tranquada, Myung‐Geun Han, Yimei Zhu, A. Bollinger, I. Božović
{"title":"聚焦离子束光刻对La2−xSrxCuO4单晶的影响","authors":"R. Caruso, F. Camino, G. Gu, J. Tranquada, Myung‐Geun Han, Yimei Zhu, A. Bollinger, I. Božović","doi":"10.3390/condmat8020035","DOIUrl":null,"url":null,"abstract":"Focused ion beam (FIB) milling is a mask-free lithography technique that allows the precise shaping of 3D materials on the micron and sub-micron scale. The recent discovery of electronic nematicity in La2−xSrxCuO4 (LSCO) thin films triggered the search for the same phenomenon in bulk LSCO crystals. With this motivation, we have systematically explored FIB patterning of bulk LSCO crystals into micro-devices suitable for longitudinal and transverse resistivity measurements. We found that several detrimental factors can affect the result, ultimately compromising the possibility of effectively using FIB milling to fabricate sub-micrometer LSCO devices, especially in the underdoped regime.","PeriodicalId":10665,"journal":{"name":"Condensed Matter","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Focused Ion Beam Lithography on La2−xSrxCuO4 Single Crystals\",\"authors\":\"R. Caruso, F. Camino, G. Gu, J. Tranquada, Myung‐Geun Han, Yimei Zhu, A. Bollinger, I. Božović\",\"doi\":\"10.3390/condmat8020035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focused ion beam (FIB) milling is a mask-free lithography technique that allows the precise shaping of 3D materials on the micron and sub-micron scale. The recent discovery of electronic nematicity in La2−xSrxCuO4 (LSCO) thin films triggered the search for the same phenomenon in bulk LSCO crystals. With this motivation, we have systematically explored FIB patterning of bulk LSCO crystals into micro-devices suitable for longitudinal and transverse resistivity measurements. We found that several detrimental factors can affect the result, ultimately compromising the possibility of effectively using FIB milling to fabricate sub-micrometer LSCO devices, especially in the underdoped regime.\",\"PeriodicalId\":10665,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat8020035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat8020035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Effects of Focused Ion Beam Lithography on La2−xSrxCuO4 Single Crystals
Focused ion beam (FIB) milling is a mask-free lithography technique that allows the precise shaping of 3D materials on the micron and sub-micron scale. The recent discovery of electronic nematicity in La2−xSrxCuO4 (LSCO) thin films triggered the search for the same phenomenon in bulk LSCO crystals. With this motivation, we have systematically explored FIB patterning of bulk LSCO crystals into micro-devices suitable for longitudinal and transverse resistivity measurements. We found that several detrimental factors can affect the result, ultimately compromising the possibility of effectively using FIB milling to fabricate sub-micrometer LSCO devices, especially in the underdoped regime.