基于SAR Sentinel-1时间序列的摩洛哥北部Loukkos流域高分辨率土地覆盖制图与作物分类方法

IF 0.4 Q4 REMOTE SENSING
El Mortaji Nizar, Miriam Wahbi, Mohamed Ait Kazzi, Otmane Yazidi Alaoui, H. Boulaassal, M. Maâtouk, M. Zaghloul, Omar El Kharki
{"title":"基于SAR Sentinel-1时间序列的摩洛哥北部Loukkos流域高分辨率土地覆盖制图与作物分类方法","authors":"El Mortaji Nizar, Miriam Wahbi, Mohamed Ait Kazzi, Otmane Yazidi Alaoui, H. Boulaassal, M. Maâtouk, M. Zaghloul, Omar El Kharki","doi":"10.4995/raet.2022.17426","DOIUrl":null,"url":null,"abstract":"Remote  sensing  has  become  more  and  more  a  reliable  tool  for  mapping  land  cover  and  monitoring  cropland. Much of the work done in this field uses optical remote sensing data. In Morocco, active remote sensing data remain under-exploited despite their importance in monitoring spatial and temporal dynamics of land cover and crops even during cloudy weather. This study aims to explore the potential of C-band Sentinel-1 data in the production of a high-resolution land cover mapping and crop classification within the irrigated Loukkos watershed agricultural landscape in northern Morocco. The work was achieved by using 33 dual-polarized images in vertical-vertical  (VV)  and  vertical-horizontal  (VH)  polarizations.  The  images  were  acquired  in  ascending  orbits  between  April 16 and October 25, 2020, with the purpose to track the backscattering behavior of the main crops and other land  cover  classes  in  the  study  area.  The  results  showed  that  the  backscatter  increased  with  the  phenological  development  of  the  monitored  crops  (rice,  watermelon,  peanuts,  and  winter  crops),  strongly  for  the  VH  and  VV  bands, and slightly for the VH/VV ratio. The other classes (water, built-up, forest, fruit trees, permanent vegetation, greenhouses, and bare lands) did not show significant variation during this period. Based on the backscattering analysis and the field data, a supervised classification was carried out, using the Random Forest Classifier (RF) algorithm.  Results  showed  that  radiometric  characteristics  and  6  days’  time  resolution  covered  by  Sentinel-1  constellation gave a high classification accuracy by dual-polarization with Radar Ratio (VH/VV) or Radar Vegetation Index and textural features (between 74.07% and 75.19%). Accordingly, this study proves that the Sentinel-1 data provide useful information and a high potential for multi-temporal analyses of crop monitoring, and reliable land cover mapping which could be a practical source of information for various purposes in order to undertake food security issues.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series\",\"authors\":\"El Mortaji Nizar, Miriam Wahbi, Mohamed Ait Kazzi, Otmane Yazidi Alaoui, H. Boulaassal, M. Maâtouk, M. Zaghloul, Omar El Kharki\",\"doi\":\"10.4995/raet.2022.17426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote  sensing  has  become  more  and  more  a  reliable  tool  for  mapping  land  cover  and  monitoring  cropland. Much of the work done in this field uses optical remote sensing data. In Morocco, active remote sensing data remain under-exploited despite their importance in monitoring spatial and temporal dynamics of land cover and crops even during cloudy weather. This study aims to explore the potential of C-band Sentinel-1 data in the production of a high-resolution land cover mapping and crop classification within the irrigated Loukkos watershed agricultural landscape in northern Morocco. The work was achieved by using 33 dual-polarized images in vertical-vertical  (VV)  and  vertical-horizontal  (VH)  polarizations.  The  images  were  acquired  in  ascending  orbits  between  April 16 and October 25, 2020, with the purpose to track the backscattering behavior of the main crops and other land  cover  classes  in  the  study  area.  The  results  showed  that  the  backscatter  increased  with  the  phenological  development  of  the  monitored  crops  (rice,  watermelon,  peanuts,  and  winter  crops),  strongly  for  the  VH  and  VV  bands, and slightly for the VH/VV ratio. The other classes (water, built-up, forest, fruit trees, permanent vegetation, greenhouses, and bare lands) did not show significant variation during this period. Based on the backscattering analysis and the field data, a supervised classification was carried out, using the Random Forest Classifier (RF) algorithm.  Results  showed  that  radiometric  characteristics  and  6  days’  time  resolution  covered  by  Sentinel-1  constellation gave a high classification accuracy by dual-polarization with Radar Ratio (VH/VV) or Radar Vegetation Index and textural features (between 74.07% and 75.19%). Accordingly, this study proves that the Sentinel-1 data provide useful information and a high potential for multi-temporal analyses of crop monitoring, and reliable land cover mapping which could be a practical source of information for various purposes in order to undertake food security issues.\",\"PeriodicalId\":43626,\"journal\":{\"name\":\"Revista de Teledeteccion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Teledeteccion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/raet.2022.17426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/raet.2022.17426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

摘要

遥感已经成为越来越可靠的测绘土地覆盖和监测农田的工具。这一领域的大部分工作都使用光学遥感数据。在摩洛哥,尽管主动遥感数据在监测土地覆盖和作物的时空动态方面很重要,但它们仍未得到充分利用,即使在多云天气期间也是如此。本研究旨在探索c波段Sentinel-1数据在摩洛哥北部Loukkos灌溉流域农业景观高分辨率土地覆盖制图和作物分类中的潜力。这项工作是通过使用33幅垂直-垂直(VV)和垂直-水平(VH)偏振的双偏振图像完成的。这些图像是在2020年4月16日至10月25日期间在上升轨道上获取的,目的是跟踪研究区域主要作物和其他土地覆盖类别的后向散射行为。结果表明:水稻、西瓜、花生和冬季作物的背向散射随物候发育而增加,其中VH和VV波段增加较多,VH/VV比值增加较少;其他类别(水、建筑、森林、果树、永久植被、温室和裸地)在这一时期没有表现出显著的变化。基于后向散射分析和现场数据,采用随机森林分类器(Random Forest Classifier, RF)算法进行监督分类。结果表明:基于雷达比(VH/VV)或雷达植被指数和纹理特征的双极化分类精度在74.07% ~ 75.19%之间,Sentinel-1星座覆盖的6 d时间分辨率和辐射特征具有较高的分类精度;因此,本研究证明,Sentinel-1数据为作物监测的多时间分析和可靠的土地覆盖测绘提供了有用的信息和很高的潜力,可以成为各种目的的实际信息来源,以便处理粮食安全问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series
Remote  sensing  has  become  more  and  more  a  reliable  tool  for  mapping  land  cover  and  monitoring  cropland. Much of the work done in this field uses optical remote sensing data. In Morocco, active remote sensing data remain under-exploited despite their importance in monitoring spatial and temporal dynamics of land cover and crops even during cloudy weather. This study aims to explore the potential of C-band Sentinel-1 data in the production of a high-resolution land cover mapping and crop classification within the irrigated Loukkos watershed agricultural landscape in northern Morocco. The work was achieved by using 33 dual-polarized images in vertical-vertical  (VV)  and  vertical-horizontal  (VH)  polarizations.  The  images  were  acquired  in  ascending  orbits  between  April 16 and October 25, 2020, with the purpose to track the backscattering behavior of the main crops and other land  cover  classes  in  the  study  area.  The  results  showed  that  the  backscatter  increased  with  the  phenological  development  of  the  monitored  crops  (rice,  watermelon,  peanuts,  and  winter  crops),  strongly  for  the  VH  and  VV  bands, and slightly for the VH/VV ratio. The other classes (water, built-up, forest, fruit trees, permanent vegetation, greenhouses, and bare lands) did not show significant variation during this period. Based on the backscattering analysis and the field data, a supervised classification was carried out, using the Random Forest Classifier (RF) algorithm.  Results  showed  that  radiometric  characteristics  and  6  days’  time  resolution  covered  by  Sentinel-1  constellation gave a high classification accuracy by dual-polarization with Radar Ratio (VH/VV) or Radar Vegetation Index and textural features (between 74.07% and 75.19%). Accordingly, this study proves that the Sentinel-1 data provide useful information and a high potential for multi-temporal analyses of crop monitoring, and reliable land cover mapping which could be a practical source of information for various purposes in order to undertake food security issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信