一个无限维指标定理和higson - kasparov - trout代数

IF 0.5 Q3 MATHEMATICS
Doman Takata
{"title":"一个无限维指标定理和higson - kasparov - trout代数","authors":"Doman Takata","doi":"10.2140/akt.2022.7.1","DOIUrl":null,"url":null,"abstract":"We have been studying the index theory for some special infinite-dimensional manifolds with a \"proper cocompact\" actions of the loop group LT of the circle T, from the viewpoint of the noncommutative geometry. In this paper, we will introduce the LT-equivariant KK-theory and we will construct three KK-elements: the index element, the Clifford symbol element and the Dirac element. These elements satisfy a certain relation, which should be called the (KK-theoretical) index theorem, or the KK-theoretical Poincar\\'e duality for infinite-dimensional manifolds. We will also discuss the assembly maps.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An infinite-dimensional index theorem and the\\nHigson–Kasparov–Trout algebra\",\"authors\":\"Doman Takata\",\"doi\":\"10.2140/akt.2022.7.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have been studying the index theory for some special infinite-dimensional manifolds with a \\\"proper cocompact\\\" actions of the loop group LT of the circle T, from the viewpoint of the noncommutative geometry. In this paper, we will introduce the LT-equivariant KK-theory and we will construct three KK-elements: the index element, the Clifford symbol element and the Dirac element. These elements satisfy a certain relation, which should be called the (KK-theoretical) index theorem, or the KK-theoretical Poincar\\\\'e duality for infinite-dimensional manifolds. We will also discuss the assembly maps.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2022.7.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2022.7.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们从非交换几何的角度研究了一些特殊的无穷维流形的指数理论,这些流形具有圆T的环群LT的“适当共紧”作用。在本文中,我们将引入LT等变KK理论,并构造三个KK元素:索引元素、Clifford符号元素和Dirac元素。这些元素满足一定的关系,该关系应称为(KK理论)指数定理,或无限维流形的KK理论庞加莱对偶。我们还将讨论装配图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An infinite-dimensional index theorem and the Higson–Kasparov–Trout algebra
We have been studying the index theory for some special infinite-dimensional manifolds with a "proper cocompact" actions of the loop group LT of the circle T, from the viewpoint of the noncommutative geometry. In this paper, we will introduce the LT-equivariant KK-theory and we will construct three KK-elements: the index element, the Clifford symbol element and the Dirac element. These elements satisfy a certain relation, which should be called the (KK-theoretical) index theorem, or the KK-theoretical Poincar\'e duality for infinite-dimensional manifolds. We will also discuss the assembly maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信