非正式可论证性、一阶BAT逻辑和走向非正式可论证形式理论的第一步

IF 0.6 Q2 LOGIC
Pawel Pawlowski, R. Urbaniak
{"title":"非正式可论证性、一阶BAT逻辑和走向非正式可论证形式理论的第一步","authors":"Pawel Pawlowski, R. Urbaniak","doi":"10.12775/llp.2021.016","DOIUrl":null,"url":null,"abstract":"BAT is a logic built to capture the inferential behavior of informal provability. Ultimately, the logic is meant to be used in an arithmetical setting. To reach this stage it has to be extended to a first-order version. In this paper we provide such an extension. We do so by constructing non-deterministic three-valued models that interpret quantifiers as some sorts of infinite disjunctions and conjunctions. We also elaborate on the semantical properties of the first-order system and consider a couple of its strengthenings. It turns out that obtaining a sensible strengthening is not straightforward. We prove that most strategies commonly used for strengthening non-deterministic logics fail in our case. Nevertheless, we identify one method of extending the system which does not.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability\",\"authors\":\"Pawel Pawlowski, R. Urbaniak\",\"doi\":\"10.12775/llp.2021.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BAT is a logic built to capture the inferential behavior of informal provability. Ultimately, the logic is meant to be used in an arithmetical setting. To reach this stage it has to be extended to a first-order version. In this paper we provide such an extension. We do so by constructing non-deterministic three-valued models that interpret quantifiers as some sorts of infinite disjunctions and conjunctions. We also elaborate on the semantical properties of the first-order system and consider a couple of its strengthenings. It turns out that obtaining a sensible strengthening is not straightforward. We prove that most strategies commonly used for strengthening non-deterministic logics fail in our case. Nevertheless, we identify one method of extending the system which does not.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2021.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2021.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

BAT是一个用来捕捉非正式可证明性的推理行为的逻辑。最终,逻辑是指在算术设置中使用。为了达到这个阶段,它必须扩展到一阶版本。在本文中,我们提供了这样一个扩展。我们通过构建非确定性三值模型来实现这一点,该模型将量词解释为某种无限析取和连词。我们还详细阐述了一阶系统的语义性质,并考虑了它的几个强化。事实证明,获得合理的强化并非易事。我们证明了大多数常用于增强非确定性逻辑的策略在我们的情况下都失败了。然而,我们确定了一种扩展该系统的方法,而这种方法没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informal Provability, First-Order BAT Logic and First Steps Towards a Formal Theory of Informal Provability
BAT is a logic built to capture the inferential behavior of informal provability. Ultimately, the logic is meant to be used in an arithmetical setting. To reach this stage it has to be extended to a first-order version. In this paper we provide such an extension. We do so by constructing non-deterministic three-valued models that interpret quantifiers as some sorts of infinite disjunctions and conjunctions. We also elaborate on the semantical properties of the first-order system and consider a couple of its strengthenings. It turns out that obtaining a sensible strengthening is not straightforward. We prove that most strategies commonly used for strengthening non-deterministic logics fail in our case. Nevertheless, we identify one method of extending the system which does not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信