{"title":"正则树上的迹算子","authors":"P. Koskela, K. N. Nguyen, Zhuang Wang","doi":"10.1515/agms-2020-0117","DOIUrl":null,"url":null,"abstract":"Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0117","citationCount":"6","resultStr":"{\"title\":\"Trace Operators on Regular Trees\",\"authors\":\"P. Koskela, K. N. Nguyen, Zhuang Wang\",\"doi\":\"10.1515/agms-2020-0117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0117\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.