{"title":"基于核的智能手机数据个体位置密度估计","authors":"F. Finazzi, L. Paci","doi":"10.1177/1471082X19870331","DOIUrl":null,"url":null,"abstract":"Localizing people across space and over time is a relevant and challenging problem in many modern applications. Smartphone ubiquity gives the opportunity to collect useful individual data as never before. In this work, the focus is on location data collected by smartphone applications. We propose a kernel-based density estimation approach that exploits cyclical spatio-temporal patterns of people to estimate the individual location density at any time, uncertainty included. Model parameters are estimated by maximum likelihood cross-validation. Unlike classic tracking methods designed for high spatio-temporal resolution data, the approach is suitable when location data are sparse in time and are affected by non-negligible errors. The approach is applied to location data collected by the Earthquake Network citizen science project which carries out a worldwide earthquake early warning system based on smartphones. The approach is parsimonious and is suitable to model location data gathered by any location-aware smartphone application.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"20 1","pages":"617 - 633"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X19870331","citationCount":"1","resultStr":"{\"title\":\"Kernel-based estimation of individual location densities from smartphone data\",\"authors\":\"F. Finazzi, L. Paci\",\"doi\":\"10.1177/1471082X19870331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing people across space and over time is a relevant and challenging problem in many modern applications. Smartphone ubiquity gives the opportunity to collect useful individual data as never before. In this work, the focus is on location data collected by smartphone applications. We propose a kernel-based density estimation approach that exploits cyclical spatio-temporal patterns of people to estimate the individual location density at any time, uncertainty included. Model parameters are estimated by maximum likelihood cross-validation. Unlike classic tracking methods designed for high spatio-temporal resolution data, the approach is suitable when location data are sparse in time and are affected by non-negligible errors. The approach is applied to location data collected by the Earthquake Network citizen science project which carries out a worldwide earthquake early warning system based on smartphones. The approach is parsimonious and is suitable to model location data gathered by any location-aware smartphone application.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":\"20 1\",\"pages\":\"617 - 633\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X19870331\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X19870331\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X19870331","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Kernel-based estimation of individual location densities from smartphone data
Localizing people across space and over time is a relevant and challenging problem in many modern applications. Smartphone ubiquity gives the opportunity to collect useful individual data as never before. In this work, the focus is on location data collected by smartphone applications. We propose a kernel-based density estimation approach that exploits cyclical spatio-temporal patterns of people to estimate the individual location density at any time, uncertainty included. Model parameters are estimated by maximum likelihood cross-validation. Unlike classic tracking methods designed for high spatio-temporal resolution data, the approach is suitable when location data are sparse in time and are affected by non-negligible errors. The approach is applied to location data collected by the Earthquake Network citizen science project which carries out a worldwide earthquake early warning system based on smartphones. The approach is parsimonious and is suitable to model location data gathered by any location-aware smartphone application.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.