calabi-yau曲面正、混合特性的半丰富性

IF 0.8 2区 数学 Q2 MATHEMATICS
F. Bernasconi, L. Stigant
{"title":"calabi-yau曲面正、混合特性的半丰富性","authors":"F. Bernasconi, L. Stigant","doi":"10.1017/nmj.2022.32","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we prove the semiampleness conjecture for Kawamata log terminal Calabi–Yau (CY) surface pairs over an excellent base ring. As applications, we deduce that generalized abundance and Serrano’s conjecture hold for surfaces. Finally, we study the semiampleness conjecture for CY threefolds over a mixed characteristic DVR.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"250 1","pages":"365 - 384"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SEMIAMPLENESS FOR CALABI–YAU SURFACES IN POSITIVE AND MIXED CHARACTERISTIC\",\"authors\":\"F. Bernasconi, L. Stigant\",\"doi\":\"10.1017/nmj.2022.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we prove the semiampleness conjecture for Kawamata log terminal Calabi–Yau (CY) surface pairs over an excellent base ring. As applications, we deduce that generalized abundance and Serrano’s conjecture hold for surfaces. Finally, we study the semiampleness conjecture for CY threefolds over a mixed characteristic DVR.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"250 1\",\"pages\":\"365 - 384\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.32\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.32","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文证明了一个优良基环上Kawamata对数终端Calabi-Yau (CY)曲面对的半强性猜想。作为应用,我们推导出广义丰度和Serrano猜想对曲面成立。最后,我们研究了混合特性DVR上CY三倍的半振幅猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEMIAMPLENESS FOR CALABI–YAU SURFACES IN POSITIVE AND MIXED CHARACTERISTIC
Abstract In this note, we prove the semiampleness conjecture for Kawamata log terminal Calabi–Yau (CY) surface pairs over an excellent base ring. As applications, we deduce that generalized abundance and Serrano’s conjecture hold for surfaces. Finally, we study the semiampleness conjecture for CY threefolds over a mixed characteristic DVR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信