Naihao Liu, Youbo Lei, Yang Yang, Zhiguo Wang, Rongchang Liu, Jinghuai Gao, Tao Wei
{"title":"基于卷积神经网络的地震资料稀疏时频分析","authors":"Naihao Liu, Youbo Lei, Yang Yang, Zhiguo Wang, Rongchang Liu, Jinghuai Gao, Tao Wei","doi":"10.1190/int-2023-0020.1","DOIUrl":null,"url":null,"abstract":"Time-frequency (TF) analysis is commonly used to reveal the local properties of seismic signals, such as frequency and spectral contents varying with time/depth. Aiming to realize a highly localized TF representation of seismic signals, researchers treated the TF analysis as an inverse problem, and regularization was adopted in the objective functions. Traditionally, the TF sparse inversion process is solved by the Lasso regression. It has been proven that the Lasso regression needs a large number of iterations to reach a high accurate solution for the convex problem. Recently, convolutional neural networks (CNNs) have been successfully used to solve the convex problem due to their high computational efficiency and strong nonlinear characterization ability. We propose to solve the sparse TF inversion using CNN and our method is named STFA-CNN. The objective function in the neural network architecture consists of two portions. The first one is to minimize the difference between the local forward and backward Fourier transform of seismic signals. The second is minimizing the regularization l p norm of TF results. To demonstrate the effectiveness of our method, we apply it to both synthetic and real seismic data. We further use the TF results to compute the attenuation of seismic waveforms and apply the attenuation attribute to predict the hydrocarbons of a seismic survey acquired over the Ordos Basin, Northwest of China.","PeriodicalId":51318,"journal":{"name":"Interpretation-A Journal of Subsurface Characterization","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Time-Frequency Analysis of Seismic Data via Convolutional Neural Network\",\"authors\":\"Naihao Liu, Youbo Lei, Yang Yang, Zhiguo Wang, Rongchang Liu, Jinghuai Gao, Tao Wei\",\"doi\":\"10.1190/int-2023-0020.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-frequency (TF) analysis is commonly used to reveal the local properties of seismic signals, such as frequency and spectral contents varying with time/depth. Aiming to realize a highly localized TF representation of seismic signals, researchers treated the TF analysis as an inverse problem, and regularization was adopted in the objective functions. Traditionally, the TF sparse inversion process is solved by the Lasso regression. It has been proven that the Lasso regression needs a large number of iterations to reach a high accurate solution for the convex problem. Recently, convolutional neural networks (CNNs) have been successfully used to solve the convex problem due to their high computational efficiency and strong nonlinear characterization ability. We propose to solve the sparse TF inversion using CNN and our method is named STFA-CNN. The objective function in the neural network architecture consists of two portions. The first one is to minimize the difference between the local forward and backward Fourier transform of seismic signals. The second is minimizing the regularization l p norm of TF results. To demonstrate the effectiveness of our method, we apply it to both synthetic and real seismic data. We further use the TF results to compute the attenuation of seismic waveforms and apply the attenuation attribute to predict the hydrocarbons of a seismic survey acquired over the Ordos Basin, Northwest of China.\",\"PeriodicalId\":51318,\"journal\":{\"name\":\"Interpretation-A Journal of Subsurface Characterization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpretation-A Journal of Subsurface Characterization\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/int-2023-0020.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation-A Journal of Subsurface Characterization","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/int-2023-0020.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Sparse Time-Frequency Analysis of Seismic Data via Convolutional Neural Network
Time-frequency (TF) analysis is commonly used to reveal the local properties of seismic signals, such as frequency and spectral contents varying with time/depth. Aiming to realize a highly localized TF representation of seismic signals, researchers treated the TF analysis as an inverse problem, and regularization was adopted in the objective functions. Traditionally, the TF sparse inversion process is solved by the Lasso regression. It has been proven that the Lasso regression needs a large number of iterations to reach a high accurate solution for the convex problem. Recently, convolutional neural networks (CNNs) have been successfully used to solve the convex problem due to their high computational efficiency and strong nonlinear characterization ability. We propose to solve the sparse TF inversion using CNN and our method is named STFA-CNN. The objective function in the neural network architecture consists of two portions. The first one is to minimize the difference between the local forward and backward Fourier transform of seismic signals. The second is minimizing the regularization l p norm of TF results. To demonstrate the effectiveness of our method, we apply it to both synthetic and real seismic data. We further use the TF results to compute the attenuation of seismic waveforms and apply the attenuation attribute to predict the hydrocarbons of a seismic survey acquired over the Ordos Basin, Northwest of China.
期刊介绍:
***Jointly published by the American Association of Petroleum Geologists (AAPG) and the Society of Exploration Geophysicists (SEG)***
Interpretation is a new, peer-reviewed journal for advancing the practice of subsurface interpretation.