一类二阶解析系数椭圆算子基本解的展开式

IF 1.5 1区 数学 Q1 MATHEMATICS
Federico Franceschini, Federico Glaudo
{"title":"一类二阶解析系数椭圆算子基本解的展开式","authors":"Federico Franceschini, Federico Glaudo","doi":"10.1112/plms.12556","DOIUrl":null,"url":null,"abstract":"Let L$L$ be a second‐order elliptic operator with analytic coefficients defined in B1⊆Rn$B_1\\subseteq \\mathbb {R}^n$ . We construct explicitly and canonically a fundamental solution for the operator, that is, a function u:Br0→R$u:B_{r_0}\\rightarrow \\mathbb {R}$ such that Lu=δ0$Lu=\\delta _0$ . As a consequence of our construction, we obtain an expansion of the fundamental solution in homogeneous terms (homogeneous polynomials divided by a power of |x|$\\vert {x}\\vert$ , plus homogeneous polynomials multiplied by log(|x|)$\\log (\\vert {x}\\vert )$ if the dimension n$n$ is even) which improves the classical result of [6]. The control we have on the complexity of each homogeneous term is optimal and in particular, when L$L$ is the Laplace–Beltrami operator of an analytic Riemannian manifold, we recover the construction of the fundamental solution due to Kodaira [8]. The main ingredients of the proof are a harmonic decomposition for singular functions and the reduction of the convergence of our construction to a nontrivial estimate on weighted paths on a graph with vertices indexed by Z2$\\mathbb {Z}^2$ .","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expansion of the fundamental solution of a second‐order elliptic operator with analytic coefficients\",\"authors\":\"Federico Franceschini, Federico Glaudo\",\"doi\":\"10.1112/plms.12556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L$L$ be a second‐order elliptic operator with analytic coefficients defined in B1⊆Rn$B_1\\\\subseteq \\\\mathbb {R}^n$ . We construct explicitly and canonically a fundamental solution for the operator, that is, a function u:Br0→R$u:B_{r_0}\\\\rightarrow \\\\mathbb {R}$ such that Lu=δ0$Lu=\\\\delta _0$ . As a consequence of our construction, we obtain an expansion of the fundamental solution in homogeneous terms (homogeneous polynomials divided by a power of |x|$\\\\vert {x}\\\\vert$ , plus homogeneous polynomials multiplied by log(|x|)$\\\\log (\\\\vert {x}\\\\vert )$ if the dimension n$n$ is even) which improves the classical result of [6]. The control we have on the complexity of each homogeneous term is optimal and in particular, when L$L$ is the Laplace–Beltrami operator of an analytic Riemannian manifold, we recover the construction of the fundamental solution due to Kodaira [8]. The main ingredients of the proof are a harmonic decomposition for singular functions and the reduction of the convergence of our construction to a nontrivial estimate on weighted paths on a graph with vertices indexed by Z2$\\\\mathbb {Z}^2$ .\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12556\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12556","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设L$L$是一个二阶椭圆算子,其解析系数定义在B1⊆Rn$B_1\substeq\mathbb{R}^n$中。我们明确而规范地构造了算子的一个基本解,即函数u:Br0→R$u:B_{R_0}\rightarrow\mathbb{R}$使得Lu=δ0$Lu=\delta _0$。由于我们的构造,我们获得了齐次项中基本解的展开式(齐次多项式除以|x|$\vert{x}\vert$的幂,加上齐次多项式乘以log(|x|)$\log(\vert{x}\ vert)$,如果维度n$n$是偶数),这改进了[6]的经典结果。我们对每个齐次项的复杂性的控制是最优的,特别是,当L$L$是解析黎曼流形的拉普拉斯-贝尔特拉米算子时,我们恢复了Kodaira[8]引起的基本解的构造。证明的主要内容是奇异函数的调和分解,以及将我们的构造收敛到顶点索引为Z2$\mathbb{Z}^2$的图上加权路径的非平凡估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expansion of the fundamental solution of a second‐order elliptic operator with analytic coefficients
Let L$L$ be a second‐order elliptic operator with analytic coefficients defined in B1⊆Rn$B_1\subseteq \mathbb {R}^n$ . We construct explicitly and canonically a fundamental solution for the operator, that is, a function u:Br0→R$u:B_{r_0}\rightarrow \mathbb {R}$ such that Lu=δ0$Lu=\delta _0$ . As a consequence of our construction, we obtain an expansion of the fundamental solution in homogeneous terms (homogeneous polynomials divided by a power of |x|$\vert {x}\vert$ , plus homogeneous polynomials multiplied by log(|x|)$\log (\vert {x}\vert )$ if the dimension n$n$ is even) which improves the classical result of [6]. The control we have on the complexity of each homogeneous term is optimal and in particular, when L$L$ is the Laplace–Beltrami operator of an analytic Riemannian manifold, we recover the construction of the fundamental solution due to Kodaira [8]. The main ingredients of the proof are a harmonic decomposition for singular functions and the reduction of the convergence of our construction to a nontrivial estimate on weighted paths on a graph with vertices indexed by Z2$\mathbb {Z}^2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信