{"title":"双相泛函单调sobolev函数的边界极限","authors":"Y. Mizuta, T. Shimomura","doi":"10.18910/77232","DOIUrl":null,"url":null,"abstract":"Our aim in this paper is to deal with boundary limits of monotone Sobolev functions for the double phase functional Φp,q(x, t) = t p + (b(x)t)q in the unit ball B of Rn, where 1 < p < q < ∞ and b(·) is a non-negative bounded function on B which is Hölder continuous of order θ ∈ (0, 1].","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"819-826"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BOUNDARY LIMITS OF MONOTONE SOBOLEV FUNCTIONS FOR DOUBLE PHASE FUNCTIONALS\",\"authors\":\"Y. Mizuta, T. Shimomura\",\"doi\":\"10.18910/77232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim in this paper is to deal with boundary limits of monotone Sobolev functions for the double phase functional Φp,q(x, t) = t p + (b(x)t)q in the unit ball B of Rn, where 1 < p < q < ∞ and b(·) is a non-negative bounded function on B which is Hölder continuous of order θ ∈ (0, 1].\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"819-826\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/77232\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/77232","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
BOUNDARY LIMITS OF MONOTONE SOBOLEV FUNCTIONS FOR DOUBLE PHASE FUNCTIONALS
Our aim in this paper is to deal with boundary limits of monotone Sobolev functions for the double phase functional Φp,q(x, t) = t p + (b(x)t)q in the unit ball B of Rn, where 1 < p < q < ∞ and b(·) is a non-negative bounded function on B which is Hölder continuous of order θ ∈ (0, 1].
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.