{"title":"双相泛函单调sobolev函数的边界极限","authors":"Y. Mizuta, T. Shimomura","doi":"10.18910/77232","DOIUrl":null,"url":null,"abstract":"Our aim in this paper is to deal with boundary limits of monotone Sobolev functions for the double phase functional Φp,q(x, t) = t p + (b(x)t)q in the unit ball B of Rn, where 1 < p < q < ∞ and b(·) is a non-negative bounded function on B which is Hölder continuous of order θ ∈ (0, 1].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BOUNDARY LIMITS OF MONOTONE SOBOLEV FUNCTIONS FOR DOUBLE PHASE FUNCTIONALS\",\"authors\":\"Y. Mizuta, T. Shimomura\",\"doi\":\"10.18910/77232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim in this paper is to deal with boundary limits of monotone Sobolev functions for the double phase functional Φp,q(x, t) = t p + (b(x)t)q in the unit ball B of Rn, where 1 < p < q < ∞ and b(·) is a non-negative bounded function on B which is Hölder continuous of order θ ∈ (0, 1].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/77232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/77232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BOUNDARY LIMITS OF MONOTONE SOBOLEV FUNCTIONS FOR DOUBLE PHASE FUNCTIONALS
Our aim in this paper is to deal with boundary limits of monotone Sobolev functions for the double phase functional Φp,q(x, t) = t p + (b(x)t)q in the unit ball B of Rn, where 1 < p < q < ∞ and b(·) is a non-negative bounded function on B which is Hölder continuous of order θ ∈ (0, 1].