理解个性化推荐系统对政治新闻感知的影响——基于内容、协作和编辑选择的新闻推荐系统的比较

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mengqi Liao
{"title":"理解个性化推荐系统对政治新闻感知的影响——基于内容、协作和编辑选择的新闻推荐系统的比较","authors":"Mengqi Liao","doi":"10.1080/08838151.2023.2206662","DOIUrl":null,"url":null,"abstract":"ABSTRACT With the increasing implementation of algorithms across various news platforms, understanding news consumers’ subjective perceptions of algorithmic-based news recommender systems has become critical. A between-subjects experiment (News Recommender System type: content-based filtering vs. collaborative filtering vs. human editorial choice-based recommender system) with 161 participants revealed that participants tended to trust the collaborative filtering system and perceive news recommended by the system to be more credible and less biased compared to editorial choices-based or content-based recommender systems – due to the triggering of the homophily heuristic – even though the three systems recommended the same set of news. Implications were discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Effects of Personalized Recommender Systems on Political News Perceptions: A Comparison of Content-Based, Collaborative, and Editorial Choice-Based News Recommender System\",\"authors\":\"Mengqi Liao\",\"doi\":\"10.1080/08838151.2023.2206662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT With the increasing implementation of algorithms across various news platforms, understanding news consumers’ subjective perceptions of algorithmic-based news recommender systems has become critical. A between-subjects experiment (News Recommender System type: content-based filtering vs. collaborative filtering vs. human editorial choice-based recommender system) with 161 participants revealed that participants tended to trust the collaborative filtering system and perceive news recommended by the system to be more credible and less biased compared to editorial choices-based or content-based recommender systems – due to the triggering of the homophily heuristic – even though the three systems recommended the same set of news. Implications were discussed.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1080/08838151.2023.2206662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1080/08838151.2023.2206662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要随着算法在各种新闻平台上的应用越来越多,了解新闻消费者对基于算法的新闻推荐系统的主观感知变得至关重要。一项有161名参与者参加的受试者间实验(新闻推荐系统类型:基于内容的过滤与协作过滤与基于人类编辑选择的推荐系统)表明,与基于编辑选择或基于内容的推荐系统相比,参与者倾向于信任协作过滤系统,并认为该系统推荐的新闻更可信,偏见更小推荐系统——由于同源性启发式的触发——即使这三个系统推荐了同一组新闻。讨论了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the Effects of Personalized Recommender Systems on Political News Perceptions: A Comparison of Content-Based, Collaborative, and Editorial Choice-Based News Recommender System
ABSTRACT With the increasing implementation of algorithms across various news platforms, understanding news consumers’ subjective perceptions of algorithmic-based news recommender systems has become critical. A between-subjects experiment (News Recommender System type: content-based filtering vs. collaborative filtering vs. human editorial choice-based recommender system) with 161 participants revealed that participants tended to trust the collaborative filtering system and perceive news recommended by the system to be more credible and less biased compared to editorial choices-based or content-based recommender systems – due to the triggering of the homophily heuristic – even though the three systems recommended the same set of news. Implications were discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信