非单调参数线性差分方程的振动检验

Q4 Mathematics
G. Chatzarakis, S. Grace, Irena JadloyskÁ
{"title":"非单调参数线性差分方程的振动检验","authors":"G. Chatzarakis, S. Grace, Irena JadloyskÁ","doi":"10.2478/tmmp-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\\[\\Delta x(n) + p(n)x(\\tau (n)) = 0,\\,n \\in {_0}\\quad [\\nabla x(n) - q(n)x(\\sigma (n)) = 0,\\,n \\in ],\\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\\[{(\\tau (n))_{n \\ge 0}},\\quad {(\\sigma (n))_{n \\ge 1}}\\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"81 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments\",\"authors\":\"G. Chatzarakis, S. Grace, Irena JadloyskÁ\",\"doi\":\"10.2478/tmmp-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\\\\[\\\\Delta x(n) + p(n)x(\\\\tau (n)) = 0,\\\\,n \\\\in {_0}\\\\quad [\\\\nabla x(n) - q(n)x(\\\\sigma (n)) = 0,\\\\,n \\\\in ],\\\\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\\\\[{(\\\\tau (n))_{n \\\\ge 0}},\\\\quad {(\\\\sigma (n))_{n \\\\ge 1}}\\\\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"79 1\",\"pages\":\"81 - 100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2021-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了一般偏差变元形式为Δx(n)+p(n)x(τ, n∈ℕ0 [Şx(n)−q(n)x(σ(n))=0, n∈ℕ],\[\Delta x(n)+p(n)x(\tau(n))=0,\,n\in{_0}\quad[\nabla x(n)-q(n)x(\sigma(n), (σ(n))n≥1\[{(\tau(n)_{n\ge 0}}},\ quad{(\sigma(n)]_{\n\ge 1}}]是(不一定是单调的)整数序列。所获得的结果改进了文献中所有已知的结果,并提供了一个在MATLAB中数值求解的例子,说明了这些结果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments
Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\[\Delta x(n) + p(n)x(\tau (n)) = 0,\,n \in {_0}\quad [\nabla x(n) - q(n)x(\sigma (n)) = 0,\,n \in ],\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\[{(\tau (n))_{n \ge 0}},\quad {(\sigma (n))_{n \ge 1}}\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信