{"title":"非单调参数线性差分方程的振动检验","authors":"G. Chatzarakis, S. Grace, Irena JadloyskÁ","doi":"10.2478/tmmp-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\\[\\Delta x(n) + p(n)x(\\tau (n)) = 0,\\,n \\in {_0}\\quad [\\nabla x(n) - q(n)x(\\sigma (n)) = 0,\\,n \\in ],\\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\\[{(\\tau (n))_{n \\ge 0}},\\quad {(\\sigma (n))_{n \\ge 1}}\\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"81 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments\",\"authors\":\"G. Chatzarakis, S. Grace, Irena JadloyskÁ\",\"doi\":\"10.2478/tmmp-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\\\\[\\\\Delta x(n) + p(n)x(\\\\tau (n)) = 0,\\\\,n \\\\in {_0}\\\\quad [\\\\nabla x(n) - q(n)x(\\\\sigma (n)) = 0,\\\\,n \\\\in ],\\\\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\\\\[{(\\\\tau (n))_{n \\\\ge 0}},\\\\quad {(\\\\sigma (n))_{n \\\\ge 1}}\\\\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"79 1\",\"pages\":\"81 - 100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2021-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Oscillation Tests for Linear Difference Equations with Non-Monotone Arguments
Abstract This paper presents sufficient conditions involving limsup for the oscillation of all solutions of linear difference equations with general deviating argument of the form Δx(n)+p(n)x(τ(n))=0, n∈ℕ0 [∇x(n)−q(n)x(σ(n))=0, n∈ℕ],\[\Delta x(n) + p(n)x(\tau (n)) = 0,\,n \in {_0}\quad [\nabla x(n) - q(n)x(\sigma (n)) = 0,\,n \in ],\ , where (p(n))n≥0 and (q(n))n≥1 are sequences of nonnegative real numbers and (τ(n))n≥0, (σ(n))n≥1\[{(\tau (n))_{n \ge 0}},\quad {(\sigma (n))_{n \ge 1}}\] are (not necessarily monotone) sequences of integers. The results obtained improve all well-known results existing in the literature and an example, numerically solved in MATLAB, illustrating the significance of these results is provided.