Jaehwan Lee, Kyoungah Cho, Yoon-Tae Park, Sungeun Park, Hee‐eun Song, Sangsig Kim
{"title":"使用冷却片增强混合能源设备的性能","authors":"Jaehwan Lee, Kyoungah Cho, Yoon-Tae Park, Sungeun Park, Hee‐eun Song, Sangsig Kim","doi":"10.1155/2022/3604240","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrated the enhancement of the output power of a hybrid energy device (HED) using a cooling patch that does not consume any external electric power. The HED consisted of a photovoltaic cell (PVC) and a thermoelectric generator (TEG); the cooling patch was attached to the TEG. When the PVC was exposed to solar irradiance, the cooling patch lowered the temperature of the PVC and increased the thermal gradient across the TEG, thereby increasing the output power. For an HED with a cooling patch at an irradiance of 1000 W/m2, the output power increased to 24.2 mW, as compared to the output power of 19.9 mW for an HED without any cooling patch.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Enhancement of Hybrid Energy Devices Using Cooling Patches\",\"authors\":\"Jaehwan Lee, Kyoungah Cho, Yoon-Tae Park, Sungeun Park, Hee‐eun Song, Sangsig Kim\",\"doi\":\"10.1155/2022/3604240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we demonstrated the enhancement of the output power of a hybrid energy device (HED) using a cooling patch that does not consume any external electric power. The HED consisted of a photovoltaic cell (PVC) and a thermoelectric generator (TEG); the cooling patch was attached to the TEG. When the PVC was exposed to solar irradiance, the cooling patch lowered the temperature of the PVC and increased the thermal gradient across the TEG, thereby increasing the output power. For an HED with a cooling patch at an irradiance of 1000 W/m2, the output power increased to 24.2 mW, as compared to the output power of 19.9 mW for an HED without any cooling patch.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3604240\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/3604240","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Performance Enhancement of Hybrid Energy Devices Using Cooling Patches
In this study, we demonstrated the enhancement of the output power of a hybrid energy device (HED) using a cooling patch that does not consume any external electric power. The HED consisted of a photovoltaic cell (PVC) and a thermoelectric generator (TEG); the cooling patch was attached to the TEG. When the PVC was exposed to solar irradiance, the cooling patch lowered the temperature of the PVC and increased the thermal gradient across the TEG, thereby increasing the output power. For an HED with a cooling patch at an irradiance of 1000 W/m2, the output power increased to 24.2 mW, as compared to the output power of 19.9 mW for an HED without any cooling patch.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells