上睑下垂患者眼部外观影像资料收集及注释的建议

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jie Meng , Binying Lin , Dongmei Li , Shiqi Hui , Xuanwei Liang , Xianchai Lin , Zhen Mao , Xingyi Li , Zuohong Li , Rongxin Chen , Yahan Yang , Ruiyang Li , Anqi Yan , Haotian Lin , Danping Huang , Chinese Association of Artificial Intelligence; Medical Artificial Intelligence Branch of Guangdong Medical Association
{"title":"上睑下垂患者眼部外观影像资料收集及注释的建议","authors":"Jie Meng ,&nbsp;Binying Lin ,&nbsp;Dongmei Li ,&nbsp;Shiqi Hui ,&nbsp;Xuanwei Liang ,&nbsp;Xianchai Lin ,&nbsp;Zhen Mao ,&nbsp;Xingyi Li ,&nbsp;Zuohong Li ,&nbsp;Rongxin Chen ,&nbsp;Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Anqi Yan ,&nbsp;Haotian Lin ,&nbsp;Danping Huang ,&nbsp;Chinese Association of Artificial Intelligence; Medical Artificial Intelligence Branch of Guangdong Medical Association","doi":"10.1016/j.imed.2022.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Ptosis is a common ophthalmologic condition, and the diagnosis is primarily based on ocular appearance. The diagnosis of such conditions can be improved using emerging technology such as artificial intelligence-based methods. However, unified data collection and labeling standards have not yet been established. This directly impacts the accuracy of ptosis diagnosis based on appearance alone. Therefore, in the present study, we aimed to establish a procedure to obtain and label images to devise a recommendation system for optimal recognition of ptosis based on ocular appearances. This would help to standardize and facilitate data sharing and serve as a guideline for the development and improvisation of algorithms in artificial intelligence for ptosis.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"3 4","pages":"Pages 287-292"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667102622000730/pdfft?md5=2dab8965976e1c6ad9a1b60d39569c90&pid=1-s2.0-S2667102622000730-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recommendation on data collection and annotation of ocular appearance images in ptosis\",\"authors\":\"Jie Meng ,&nbsp;Binying Lin ,&nbsp;Dongmei Li ,&nbsp;Shiqi Hui ,&nbsp;Xuanwei Liang ,&nbsp;Xianchai Lin ,&nbsp;Zhen Mao ,&nbsp;Xingyi Li ,&nbsp;Zuohong Li ,&nbsp;Rongxin Chen ,&nbsp;Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Anqi Yan ,&nbsp;Haotian Lin ,&nbsp;Danping Huang ,&nbsp;Chinese Association of Artificial Intelligence; Medical Artificial Intelligence Branch of Guangdong Medical Association\",\"doi\":\"10.1016/j.imed.2022.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ptosis is a common ophthalmologic condition, and the diagnosis is primarily based on ocular appearance. The diagnosis of such conditions can be improved using emerging technology such as artificial intelligence-based methods. However, unified data collection and labeling standards have not yet been established. This directly impacts the accuracy of ptosis diagnosis based on appearance alone. Therefore, in the present study, we aimed to establish a procedure to obtain and label images to devise a recommendation system for optimal recognition of ptosis based on ocular appearances. This would help to standardize and facilitate data sharing and serve as a guideline for the development and improvisation of algorithms in artificial intelligence for ptosis.</p></div>\",\"PeriodicalId\":73400,\"journal\":{\"name\":\"Intelligent medicine\",\"volume\":\"3 4\",\"pages\":\"Pages 287-292\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667102622000730/pdfft?md5=2dab8965976e1c6ad9a1b60d39569c90&pid=1-s2.0-S2667102622000730-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667102622000730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102622000730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

上睑下垂是一种常见的眼科疾病,诊断主要依据眼部外观。利用新兴技术(如基于人工智能的方法)可以改善此类疾病的诊断。然而,统一的数据收集和标记标准尚未建立。这直接影响了仅根据外观诊断上睑下垂的准确性。因此,在本研究中,我们旨在建立一套获取和标记图像的程序,从而设计出一套基于眼部外观的上睑下垂最佳识别推荐系统。这将有助于规范和促进数据共享,并为上睑下垂人工智能算法的开发和改进提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendation on data collection and annotation of ocular appearance images in ptosis

Ptosis is a common ophthalmologic condition, and the diagnosis is primarily based on ocular appearance. The diagnosis of such conditions can be improved using emerging technology such as artificial intelligence-based methods. However, unified data collection and labeling standards have not yet been established. This directly impacts the accuracy of ptosis diagnosis based on appearance alone. Therefore, in the present study, we aimed to establish a procedure to obtain and label images to devise a recommendation system for optimal recognition of ptosis based on ocular appearances. This would help to standardize and facilitate data sharing and serve as a guideline for the development and improvisation of algorithms in artificial intelligence for ptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信