CO2跨临界热泵两相喷射器的一种简单设计方法

IF 1.3 4区 工程技术 Q4 MECHANICS
†. K.Ameur, Z. Aidoun
{"title":"CO2跨临界热泵两相喷射器的一种简单设计方法","authors":"†. K.Ameur, Z. Aidoun","doi":"10.47176/jafm.16.10.1833","DOIUrl":null,"url":null,"abstract":"Integrating a two-phase ejector in mechanical vapor compression heat pumps is a practical and low-cost solution for improving performance and reducing energy consumption. Typically, using an ejector to recover part of the important pressure expansion losses in CO2 systems may improve the operating conditions of the compressor. One of the prerequisites for the success of such an application is the proper design of the ejector. This study is mainly dedicated to developing a simple approach for CO2 ejector design. The advantage of using the ejector as an expander in a transcritical CO2 heat pump is first introduced. Compressor operation is particularly improved. The development of an ejector design model for CO2 expanding from transcritical to two-phase conditions is presented. Validation of the thermodynamic model with experimental results from the literature shows the predictions to be within an acceptable range of discrepancy. The primary nozzle throat diameter calculations do not exceed ±8% of error for transcritical conditions. The error of the predicted pressure at the outlet of the ejector is in the limit of -15% to +3%. A practical design example for estimating the transcritical CO2 ejectors geometry integrated in a heat pump is presented. The results show the important decrease of primary nozzle diameters with the drop of Tevap, especially for the throat. A decrease of Dmix also occurs with Tevap and an optimal diameter is obtained for each condition considered. The design of the diffuser is based on a compromise between the outlet velocity and the length of the diffuser. The detailed design procedure with the proposed model, complemented with data from the literature, is a valuable tool for rapidly generating useful results and obtaining preliminary designs transcritical CO2 ejector.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Design Approach of Two-Phase Ejectors for CO2 Transcritical Heat Pumps\",\"authors\":\"†. K.Ameur, Z. Aidoun\",\"doi\":\"10.47176/jafm.16.10.1833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating a two-phase ejector in mechanical vapor compression heat pumps is a practical and low-cost solution for improving performance and reducing energy consumption. Typically, using an ejector to recover part of the important pressure expansion losses in CO2 systems may improve the operating conditions of the compressor. One of the prerequisites for the success of such an application is the proper design of the ejector. This study is mainly dedicated to developing a simple approach for CO2 ejector design. The advantage of using the ejector as an expander in a transcritical CO2 heat pump is first introduced. Compressor operation is particularly improved. The development of an ejector design model for CO2 expanding from transcritical to two-phase conditions is presented. Validation of the thermodynamic model with experimental results from the literature shows the predictions to be within an acceptable range of discrepancy. The primary nozzle throat diameter calculations do not exceed ±8% of error for transcritical conditions. The error of the predicted pressure at the outlet of the ejector is in the limit of -15% to +3%. A practical design example for estimating the transcritical CO2 ejectors geometry integrated in a heat pump is presented. The results show the important decrease of primary nozzle diameters with the drop of Tevap, especially for the throat. A decrease of Dmix also occurs with Tevap and an optimal diameter is obtained for each condition considered. The design of the diffuser is based on a compromise between the outlet velocity and the length of the diffuser. The detailed design procedure with the proposed model, complemented with data from the literature, is a valuable tool for rapidly generating useful results and obtaining preliminary designs transcritical CO2 ejector.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.16.10.1833\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.10.1833","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在机械蒸汽压缩热泵中集成两相喷射器是一种实用且低成本的解决方案,可提高性能并降低能耗。通常,使用喷射器来回收CO2系统中的部分重要压力膨胀损失可以改善压缩机的操作条件。这种应用成功的先决条件之一是喷射器的正确设计。本研究主要致力于开发一种简单的CO2喷射器设计方法。首先介绍了在跨临界CO2热泵中使用喷射器作为膨胀机的优点。压缩机的运行尤其得到改善。介绍了CO2从跨临界膨胀到两相条件的喷射器设计模型的发展。热力学模型与文献中的实验结果的验证表明,预测在可接受的偏差范围内。主喷嘴喉部直径计算不超过跨临界条件下误差的±8%。喷射器出口预测压力的误差在-15%至+3%的范围内。给出了一个估算热泵跨临界CO2喷射器几何结构的实用设计实例。结果表明,一次喷嘴直径随着Tevap的下降而显著减小,尤其是喉部。Dmix的减小也与Tevap一起发生,并且对于所考虑的每个条件都获得了最佳直径。扩散器的设计基于出口速度和扩散器长度之间的折衷。所提出的模型的详细设计程序,加上文献中的数据,是快速生成有用结果和获得跨临界CO2喷射器初步设计的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Design Approach of Two-Phase Ejectors for CO2 Transcritical Heat Pumps
Integrating a two-phase ejector in mechanical vapor compression heat pumps is a practical and low-cost solution for improving performance and reducing energy consumption. Typically, using an ejector to recover part of the important pressure expansion losses in CO2 systems may improve the operating conditions of the compressor. One of the prerequisites for the success of such an application is the proper design of the ejector. This study is mainly dedicated to developing a simple approach for CO2 ejector design. The advantage of using the ejector as an expander in a transcritical CO2 heat pump is first introduced. Compressor operation is particularly improved. The development of an ejector design model for CO2 expanding from transcritical to two-phase conditions is presented. Validation of the thermodynamic model with experimental results from the literature shows the predictions to be within an acceptable range of discrepancy. The primary nozzle throat diameter calculations do not exceed ±8% of error for transcritical conditions. The error of the predicted pressure at the outlet of the ejector is in the limit of -15% to +3%. A practical design example for estimating the transcritical CO2 ejectors geometry integrated in a heat pump is presented. The results show the important decrease of primary nozzle diameters with the drop of Tevap, especially for the throat. A decrease of Dmix also occurs with Tevap and an optimal diameter is obtained for each condition considered. The design of the diffuser is based on a compromise between the outlet velocity and the length of the diffuser. The detailed design procedure with the proposed model, complemented with data from the literature, is a valuable tool for rapidly generating useful results and obtaining preliminary designs transcritical CO2 ejector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信