Hilbert空间上一类随机偏泛函积分微分方程的几乎肯定渐近稳定性

IF 0.1 Q4 MATHEMATICS
M. Dieye, M. Diop, K. Ezzinbi
{"title":"Hilbert空间上一类随机偏泛函积分微分方程的几乎肯定渐近稳定性","authors":"M. Dieye, M. Diop, K. Ezzinbi","doi":"10.1080/25742558.2019.1602928","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we study the asymptotic behavior of the mild solutions of a class of stochastic partial functional integrodifferential equation on Hilbert spaces. Using the stochastic convolution developed, we establish the exponential stability in mean square with p ≥ 2. Also, pathwise exponential stability is proved for p> 2. We extend the result of an example is provided for illustration.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2019.1602928","citationCount":"2","resultStr":"{\"title\":\"Almost sure asymptotic stability for some stochastic partial functional integrodifferential equations on Hilbert spaces\",\"authors\":\"M. Dieye, M. Diop, K. Ezzinbi\",\"doi\":\"10.1080/25742558.2019.1602928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we study the asymptotic behavior of the mild solutions of a class of stochastic partial functional integrodifferential equation on Hilbert spaces. Using the stochastic convolution developed, we establish the exponential stability in mean square with p ≥ 2. Also, pathwise exponential stability is proved for p> 2. We extend the result of an example is provided for illustration.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2019.1602928\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2019.1602928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2019.1602928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要在这项工作中,我们研究了Hilbert空间上一类随机偏泛函积分微分方程的温和解的渐近性态。利用发展的随机卷积,我们建立了p≥2的均方指数稳定性。同时,证明了p>2的路径指数稳定性。我们对一个实例的结果进行了扩展,以供说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost sure asymptotic stability for some stochastic partial functional integrodifferential equations on Hilbert spaces
Abstract In this work, we study the asymptotic behavior of the mild solutions of a class of stochastic partial functional integrodifferential equation on Hilbert spaces. Using the stochastic convolution developed, we establish the exponential stability in mean square with p ≥ 2. Also, pathwise exponential stability is proved for p> 2. We extend the result of an example is provided for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信