V. Gutlyanski̇i̇, O. Nesmelova, V. Ryazanov, E. Yakubov
{"title":"半线性贝尔特拉米方程的理论研究","authors":"V. Gutlyanski̇i̇, O. Nesmelova, V. Ryazanov, E. Yakubov","doi":"10.33205/cma.1248692","DOIUrl":null,"url":null,"abstract":"We study the semi-linear Beltrami equation $\\omega_{\\bar{z}}-\\mu(z) \\omega_z=\\sigma(z)q(\\omega(z))$ and show that it is closely related to the corresponding semi-linear equation of the form ${\\rm div} A(z)\\nabla\\,U(z)=G(z) Q(U(z)).$ Applying the theory of completely continuous operators by Ahlfors-Bers and Leray-Schauder, we prove existence of regular solutions both to the semi-linear Beltrami equation and to the given above semi-linear equation in the divergent form, see Theorems 1.1 and 5.2. We also derive their representation through solutions of the semi-linear Vekua type equations and generalized analytic functions with sources. Finally, we apply Theorem 5.2 for several model equations describing physical phenomena in anisotropic and inhomogeneous media.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward the theory of semi-linear Beltrami equations\",\"authors\":\"V. Gutlyanski̇i̇, O. Nesmelova, V. Ryazanov, E. Yakubov\",\"doi\":\"10.33205/cma.1248692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the semi-linear Beltrami equation $\\\\omega_{\\\\bar{z}}-\\\\mu(z) \\\\omega_z=\\\\sigma(z)q(\\\\omega(z))$ and show that it is closely related to the corresponding semi-linear equation of the form ${\\\\rm div} A(z)\\\\nabla\\\\,U(z)=G(z) Q(U(z)).$ Applying the theory of completely continuous operators by Ahlfors-Bers and Leray-Schauder, we prove existence of regular solutions both to the semi-linear Beltrami equation and to the given above semi-linear equation in the divergent form, see Theorems 1.1 and 5.2. We also derive their representation through solutions of the semi-linear Vekua type equations and generalized analytic functions with sources. Finally, we apply Theorem 5.2 for several model equations describing physical phenomena in anisotropic and inhomogeneous media.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1248692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1248692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Toward the theory of semi-linear Beltrami equations
We study the semi-linear Beltrami equation $\omega_{\bar{z}}-\mu(z) \omega_z=\sigma(z)q(\omega(z))$ and show that it is closely related to the corresponding semi-linear equation of the form ${\rm div} A(z)\nabla\,U(z)=G(z) Q(U(z)).$ Applying the theory of completely continuous operators by Ahlfors-Bers and Leray-Schauder, we prove existence of regular solutions both to the semi-linear Beltrami equation and to the given above semi-linear equation in the divergent form, see Theorems 1.1 and 5.2. We also derive their representation through solutions of the semi-linear Vekua type equations and generalized analytic functions with sources. Finally, we apply Theorem 5.2 for several model equations describing physical phenomena in anisotropic and inhomogeneous media.