Yuanqiang Yu, Peng Zhang, Kai Zhao, Yan Zheng, Jianye Hao
{"title":"通过知识引导的策略网络加速深度强化学习","authors":"Yuanqiang Yu, Peng Zhang, Kai Zhao, Yan Zheng, Jianye Hao","doi":"10.1007/s10458-023-09600-1","DOIUrl":null,"url":null,"abstract":"<div><p>Deep reinforcement learning has contributed to dramatic advances in many tasks, such as playing games, controlling robots, and navigating complex environments. However, it requires many interactions with the environment. This is different from the human learning process since humans can use prior knowledge, which can significantly speed up the learning process as it avoids unnecessary exploration. Previous works integrating knowledge in RL did not model uncertainty in human cognition, which reduces the reliability of knowledge. In this paper, we propose a knowledge-guided policy network, a novel framework that combines suboptimal human knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller representing human knowledge and a refined module to fine-tune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing reinforcement learning algorithms such as PPO, AC, and SAC. We conduct experiments on both discrete and continuous control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, significantly improves the learning efficiency of basic RL algorithms, even with very low-performance human prior knowledge. Additional experiments are conducted on the number of fuzzy rules and the interpretability of the policy, which make our proposed framework more complete and reasonable. The code for this research is released under the project page of https://github.com/yuyuanq/reinforcement-learning-using-knowledge-controller.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating deep reinforcement learning via knowledge-guided policy network\",\"authors\":\"Yuanqiang Yu, Peng Zhang, Kai Zhao, Yan Zheng, Jianye Hao\",\"doi\":\"10.1007/s10458-023-09600-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep reinforcement learning has contributed to dramatic advances in many tasks, such as playing games, controlling robots, and navigating complex environments. However, it requires many interactions with the environment. This is different from the human learning process since humans can use prior knowledge, which can significantly speed up the learning process as it avoids unnecessary exploration. Previous works integrating knowledge in RL did not model uncertainty in human cognition, which reduces the reliability of knowledge. In this paper, we propose a knowledge-guided policy network, a novel framework that combines suboptimal human knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller representing human knowledge and a refined module to fine-tune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing reinforcement learning algorithms such as PPO, AC, and SAC. We conduct experiments on both discrete and continuous control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, significantly improves the learning efficiency of basic RL algorithms, even with very low-performance human prior knowledge. Additional experiments are conducted on the number of fuzzy rules and the interpretability of the policy, which make our proposed framework more complete and reasonable. The code for this research is released under the project page of https://github.com/yuyuanq/reinforcement-learning-using-knowledge-controller.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-023-09600-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09600-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Accelerating deep reinforcement learning via knowledge-guided policy network
Deep reinforcement learning has contributed to dramatic advances in many tasks, such as playing games, controlling robots, and navigating complex environments. However, it requires many interactions with the environment. This is different from the human learning process since humans can use prior knowledge, which can significantly speed up the learning process as it avoids unnecessary exploration. Previous works integrating knowledge in RL did not model uncertainty in human cognition, which reduces the reliability of knowledge. In this paper, we propose a knowledge-guided policy network, a novel framework that combines suboptimal human knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller representing human knowledge and a refined module to fine-tune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing reinforcement learning algorithms such as PPO, AC, and SAC. We conduct experiments on both discrete and continuous control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, significantly improves the learning efficiency of basic RL algorithms, even with very low-performance human prior knowledge. Additional experiments are conducted on the number of fuzzy rules and the interpretability of the policy, which make our proposed framework more complete and reasonable. The code for this research is released under the project page of https://github.com/yuyuanq/reinforcement-learning-using-knowledge-controller.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.