给定Weyl函数的逆量子-狄拉克问题的唯一性

Q4 Mathematics
M. Bohner, Ayça Çetinkaya
{"title":"给定Weyl函数的逆量子-狄拉克问题的唯一性","authors":"M. Bohner, Ayça Çetinkaya","doi":"10.2478/tmmp-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we consider a boundary value problem for a q-Dirac equation. We prove orthogonality of the eigenfunctions, realness of the eigenvalues, and we study asymptotic formulas of the eigenfunctions. We show that the eigenfunctions form a complete system, we obtain the expansion formula with respect to the eigenfunctions, and we derive Parseval’s equality. We construct the Weyl solution and the Weyl function. We prove a uniqueness theorem for the solution of the inverse problem with respect to the Weyl function.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"84 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness for an Inverse Quantum-Dirac Problem with Given Weyl Function\",\"authors\":\"M. Bohner, Ayça Çetinkaya\",\"doi\":\"10.2478/tmmp-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we consider a boundary value problem for a q-Dirac equation. We prove orthogonality of the eigenfunctions, realness of the eigenvalues, and we study asymptotic formulas of the eigenfunctions. We show that the eigenfunctions form a complete system, we obtain the expansion formula with respect to the eigenfunctions, and we derive Parseval’s equality. We construct the Weyl solution and the Weyl function. We prove a uniqueness theorem for the solution of the inverse problem with respect to the Weyl function.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"84 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究一类q-Dirac方程的边值问题。证明了本征函数的正交性,本征值的实数性,并研究了本征函数的渐近公式。我们证明了特征函数构成了一个完备的系统,得到了特征函数的展开式,并推导了Parseval等式。构造了Weyl解和Weyl函数。我们证明了关于Weyl函数的反问题解的唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness for an Inverse Quantum-Dirac Problem with Given Weyl Function
Abstract In this work, we consider a boundary value problem for a q-Dirac equation. We prove orthogonality of the eigenfunctions, realness of the eigenvalues, and we study asymptotic formulas of the eigenfunctions. We show that the eigenfunctions form a complete system, we obtain the expansion formula with respect to the eigenfunctions, and we derive Parseval’s equality. We construct the Weyl solution and the Weyl function. We prove a uniqueness theorem for the solution of the inverse problem with respect to the Weyl function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信