混合Rasch模型中的伪潜在类问题:不同能力分布下三种最大似然估计方法的比较

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
S. Şen
{"title":"混合Rasch模型中的伪潜在类问题:不同能力分布下三种最大似然估计方法的比较","authors":"S. Şen","doi":"10.1080/15305058.2017.1312408","DOIUrl":null,"url":null,"abstract":"Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2017.1312408","citationCount":"6","resultStr":"{\"title\":\"Spurious Latent Class Problem in the Mixed Rasch Model: A Comparison of Three Maximum Likelihood Estimation Methods under Different Ability Distributions\",\"authors\":\"S. Şen\",\"doi\":\"10.1080/15305058.2017.1312408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2017.1312408\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2017.1312408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2017.1312408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

最近的研究表明,当能力分布非正态时,在混合Rasch模型的贝叶斯估计中可以观察到潜在类的过度提取。当使用最大似然估计方法(条件、边际和联合)进行估计时,本研究检验了非正态能力分布对混合Rasch模型中潜在类数量的影响。在模拟研究和实证研究中使用了三个信息准则拟合指数(Akaike信息准则、贝叶斯信息准则和样本量调整后的BIC)。这项研究的结果表明,通过边际最大似然和联合最大似然估计可以观察到虚假的潜在类问题。然而,条件最大似然估计在非正态能力分布的情况下没有表现出过度牵引问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spurious Latent Class Problem in the Mixed Rasch Model: A Comparison of Three Maximum Likelihood Estimation Methods under Different Ability Distributions
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信