MTP2情形下高斯积不等式的组合证明

IF 0.6 Q4 STATISTICS & PROBABILITY
C. Genest, Frédéric Ouimet
{"title":"MTP2情形下高斯积不等式的组合证明","authors":"C. Genest, Frédéric Ouimet","doi":"10.1515/demo-2022-0116","DOIUrl":null,"url":null,"abstract":"Abstract A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector X = ( X 1 , … , X d ) {\\boldsymbol{X}}=\\left({X}_{1},\\ldots ,{X}_{d}) of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on X {\\boldsymbol{X}} is shown to be strictly weaker than the assumption that the density of the random vector ( ∣ X 1 ∣ , … , ∣ X d ∣ ) \\left(| {X}_{1}| ,\\ldots ,| {X}_{d}| ) is multivariate totally positive of order 2, abbreviated MTP 2 {\\text{MTP}}_{2} , for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"10 1","pages":"236 - 244"},"PeriodicalIF":0.6000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A combinatorial proof of the Gaussian product inequality beyond the MTP2 case\",\"authors\":\"C. Genest, Frédéric Ouimet\",\"doi\":\"10.1515/demo-2022-0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector X = ( X 1 , … , X d ) {\\\\boldsymbol{X}}=\\\\left({X}_{1},\\\\ldots ,{X}_{d}) of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on X {\\\\boldsymbol{X}} is shown to be strictly weaker than the assumption that the density of the random vector ( ∣ X 1 ∣ , … , ∣ X d ∣ ) \\\\left(| {X}_{1}| ,\\\\ldots ,| {X}_{d}| ) is multivariate totally positive of order 2, abbreviated MTP 2 {\\\\text{MTP}}_{2} , for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"10 1\",\"pages\":\"236 - 244\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

摘要在假定中心高斯随机向量X=(X1,…,XD)的每个分量=\left的情况下,给出了高斯乘积不等式(GPI)的组合证明({X}_{1} ,\ldots,{X}_{d} )可以写成标准高斯随机向量的分量的线性组合,具有相同符号的系数。X{\boldsymbol{X}}上的这一条件被证明严格弱于随机向量的密度(ÜX 1Ü,…,ÜX dÜ)\left(|{X}_{1} |,\ldots,|{X}_{d} |)是2阶的多变量全正,缩写为MTP 2{\text{MTP}}_{2},GPI已经为其成立。在这种情况下,本文强调了GPI与一定比例伽玛函数的单调性之间的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combinatorial proof of the Gaussian product inequality beyond the MTP2 case
Abstract A combinatorial proof of the Gaussian product inequality (GPI) is given under the assumption that each component of a centered Gaussian random vector X = ( X 1 , … , X d ) {\boldsymbol{X}}=\left({X}_{1},\ldots ,{X}_{d}) of arbitrary length can be written as a linear combination, with coefficients of identical sign, of the components of a standard Gaussian random vector. This condition on X {\boldsymbol{X}} is shown to be strictly weaker than the assumption that the density of the random vector ( ∣ X 1 ∣ , … , ∣ X d ∣ ) \left(| {X}_{1}| ,\ldots ,| {X}_{d}| ) is multivariate totally positive of order 2, abbreviated MTP 2 {\text{MTP}}_{2} , for which the GPI is already known to hold. Under this condition, the paper highlights a new link between the GPI and the monotonicity of a certain ratio of gamma functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信