利用Malliavin演算对累加模型下的累积损失衍生品定价

IF 0.4 Q4 MATHEMATICS
M. Khalfallah, M. Hadji, J. Vives
{"title":"利用Malliavin演算对累加模型下的累积损失衍生品定价","authors":"M. Khalfallah, M. Hadji, J. Vives","doi":"10.5269/bspm.51549","DOIUrl":null,"url":null,"abstract":"We show that integration by parts formulas based on Malliavin-Skorohod calculus techniques for additive processes help us to compute quantities like ${\\E}(L_T h(L_T))$ for different suitable functions $h$ and different models for the cumulative loss process $L_T$. These quantities are important in Insurance and Finance. For example they appear in computing expected shortfall risk measures or stop-loss contracts. The formulas given in the present paper, obtained by simple proofs, generalize the formulas given in a recent paper by Hillairet, Jiao and Réveillac using Malliavin calculus techniques for the standard Poisson process, a particular case of additive process.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing cumulative loss derivatives under additive models via Malliavin calculus\",\"authors\":\"M. Khalfallah, M. Hadji, J. Vives\",\"doi\":\"10.5269/bspm.51549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that integration by parts formulas based on Malliavin-Skorohod calculus techniques for additive processes help us to compute quantities like ${\\\\E}(L_T h(L_T))$ for different suitable functions $h$ and different models for the cumulative loss process $L_T$. These quantities are important in Insurance and Finance. For example they appear in computing expected shortfall risk measures or stop-loss contracts. The formulas given in the present paper, obtained by simple proofs, generalize the formulas given in a recent paper by Hillairet, Jiao and Réveillac using Malliavin calculus techniques for the standard Poisson process, a particular case of additive process.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了基于加性过程的Malliavin-Skorohod微积分技术的分部积分公式可以帮助我们计算不同合适函数$h$和累积损失过程$L_T$的不同模型的${\E}(L_T h(L_T))$等量。这些数量在保险和金融中很重要。例如,它们出现在计算预期短缺风险措施或止损合约中。本文所给出的公式,通过简单的证明,推广了Hillairet, Jiao和rsamuillac在最近的一篇论文中使用Malliavin演算技术对标准泊松过程(一种特殊的加性过程)所给出的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing cumulative loss derivatives under additive models via Malliavin calculus
We show that integration by parts formulas based on Malliavin-Skorohod calculus techniques for additive processes help us to compute quantities like ${\E}(L_T h(L_T))$ for different suitable functions $h$ and different models for the cumulative loss process $L_T$. These quantities are important in Insurance and Finance. For example they appear in computing expected shortfall risk measures or stop-loss contracts. The formulas given in the present paper, obtained by simple proofs, generalize the formulas given in a recent paper by Hillairet, Jiao and Réveillac using Malliavin calculus techniques for the standard Poisson process, a particular case of additive process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信