贝叶斯因果森林与2022 ACIC数据挑战:可扩展性和敏感性

Ajinkya Kokandakar, Hyunseung Kang, Sameer K. Deshpande
{"title":"贝叶斯因果森林与2022 ACIC数据挑战:可扩展性和敏感性","authors":"Ajinkya Kokandakar, Hyunseung Kang, Sameer K. Deshpande","doi":"10.1353/obs.2023.0024","DOIUrl":null,"url":null,"abstract":"Abstract:We demonstrate how Hahn et al.'s Bayesian Causal Forests model (BCF) can be used to estimate conditional average treatment effects for the longitudinal dataset in the 2022 American Causal Inference Conference Data Challenge. Unfortunately, existing implementations of BCF do not scale to the size of the challenge data. Therefore, we developed flexBCF—a more scalable and flexible implementation of BCF— and used it in our challenge submission. We investigate the sensitivity of our results to the choice of propensity score estimation method and the use of sparsity-inducing regression tree priors. While we found that our overall point predictions were not especially sensitive to these modeling choices, we did observe that running BCF with flexibly estimated propensity scores often yielded better-calibrated uncertainty intervals.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Causal Forests & the 2022 ACIC Data Challenge: Scalability and Sensitivity\",\"authors\":\"Ajinkya Kokandakar, Hyunseung Kang, Sameer K. Deshpande\",\"doi\":\"10.1353/obs.2023.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:We demonstrate how Hahn et al.'s Bayesian Causal Forests model (BCF) can be used to estimate conditional average treatment effects for the longitudinal dataset in the 2022 American Causal Inference Conference Data Challenge. Unfortunately, existing implementations of BCF do not scale to the size of the challenge data. Therefore, we developed flexBCF—a more scalable and flexible implementation of BCF— and used it in our challenge submission. We investigate the sensitivity of our results to the choice of propensity score estimation method and the use of sparsity-inducing regression tree priors. While we found that our overall point predictions were not especially sensitive to these modeling choices, we did observe that running BCF with flexibly estimated propensity scores often yielded better-calibrated uncertainty intervals.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们展示了Hahn等人的贝叶斯因果森林模型(BCF)如何在2022年美国因果推理会议数据挑战中用于估计纵向数据集的条件平均治疗效果。不幸的是,BCF的现有实现无法扩展到挑战数据的大小。因此,我们开发了flexBCF——一种更具可扩展性和灵活性的BCF实现——并在我们的挑战提交中使用了它。我们研究了我们的结果对倾向得分估计方法的选择和稀疏性诱导回归树先验的使用的敏感性。虽然我们发现我们的总体点预测对这些建模选择并不特别敏感,但我们确实观察到,用灵活估计的倾向得分运行BCF通常会产生更好的校准不确定性区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Causal Forests & the 2022 ACIC Data Challenge: Scalability and Sensitivity
Abstract:We demonstrate how Hahn et al.'s Bayesian Causal Forests model (BCF) can be used to estimate conditional average treatment effects for the longitudinal dataset in the 2022 American Causal Inference Conference Data Challenge. Unfortunately, existing implementations of BCF do not scale to the size of the challenge data. Therefore, we developed flexBCF—a more scalable and flexible implementation of BCF— and used it in our challenge submission. We investigate the sensitivity of our results to the choice of propensity score estimation method and the use of sparsity-inducing regression tree priors. While we found that our overall point predictions were not especially sensitive to these modeling choices, we did observe that running BCF with flexibly estimated propensity scores often yielded better-calibrated uncertainty intervals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信