{"title":"随机环境下的多型弱亚临界分支过程","authors":"V. Vatutin, E. Dyakonova","doi":"10.1515/dma-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment X of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions EX < 0 and EXeX > 0.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"31 1","pages":"207 - 222"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multitype weakly subcritical branching processes in random environment\",\"authors\":\"V. Vatutin, E. Dyakonova\",\"doi\":\"10.1515/dma-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment X of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions EX < 0 and EXeX > 0.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"31 1\",\"pages\":\"207 - 222\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2021-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Multitype weakly subcritical branching processes in random environment
Abstract A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment X of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions EX < 0 and EXeX > 0.
期刊介绍:
The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.