D. Kardaś, Izabela WARDACH-ŚWIĘCICKAa, Artur Grajewski, A. Grajewski
{"title":"换热器部分瞬态一维热流模型、迎风数值求解方法及实验验证","authors":"D. Kardaś, Izabela WARDACH-ŚWIĘCICKAa, Artur Grajewski, A. Grajewski","doi":"10.24425/ather.2022.144406","DOIUrl":null,"url":null,"abstract":"Shell and tube heat exchangers are commonly used in a wide range of practical engineering. The key issue in such a system is the heat exchange between the hot and cold working media. An increased cost of production of these devices has forced all manufacturing companies to reduce the total amount of used materials by better optimizing their construction. Numerous studies on the heat exchanger design codes have been carried out, basically focusing on the use of fully time-dependent partial differential equations for mass, momentum, and energy balance. They are very complex and time-consuming, especially when the designers want to have full information in a full 3D system. The paper presents the 1D mathematical model for analysis of the thermal performance of the counter-current heat exchanger comprised of mixed time-dependent and time-independent equations, solved by the upwind numerical solution method, which allows for a reduction in the CPU time for obtaining the proper solution. The comparison of numerical results obtained from an in-house program called Upwind Heat Exchanger Solver written in a Fortran code, with those derived using commercial software package ASPEN, and those obtained experimentally, shows very good agreement in terms of the temperature and pressure distribution predictions. The proposed method for fast designing calculations appears beneficial for other tube shapes and types of heat exchangers.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially transient one-dimensional thermal-flow model of a heat exchanger, upwind numerical solution method and experimental verification\",\"authors\":\"D. Kardaś, Izabela WARDACH-ŚWIĘCICKAa, Artur Grajewski, A. Grajewski\",\"doi\":\"10.24425/ather.2022.144406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shell and tube heat exchangers are commonly used in a wide range of practical engineering. The key issue in such a system is the heat exchange between the hot and cold working media. An increased cost of production of these devices has forced all manufacturing companies to reduce the total amount of used materials by better optimizing their construction. Numerous studies on the heat exchanger design codes have been carried out, basically focusing on the use of fully time-dependent partial differential equations for mass, momentum, and energy balance. They are very complex and time-consuming, especially when the designers want to have full information in a full 3D system. The paper presents the 1D mathematical model for analysis of the thermal performance of the counter-current heat exchanger comprised of mixed time-dependent and time-independent equations, solved by the upwind numerical solution method, which allows for a reduction in the CPU time for obtaining the proper solution. The comparison of numerical results obtained from an in-house program called Upwind Heat Exchanger Solver written in a Fortran code, with those derived using commercial software package ASPEN, and those obtained experimentally, shows very good agreement in terms of the temperature and pressure distribution predictions. The proposed method for fast designing calculations appears beneficial for other tube shapes and types of heat exchangers.\",\"PeriodicalId\":45257,\"journal\":{\"name\":\"Archives of Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ather.2022.144406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2022.144406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Partially transient one-dimensional thermal-flow model of a heat exchanger, upwind numerical solution method and experimental verification
Shell and tube heat exchangers are commonly used in a wide range of practical engineering. The key issue in such a system is the heat exchange between the hot and cold working media. An increased cost of production of these devices has forced all manufacturing companies to reduce the total amount of used materials by better optimizing their construction. Numerous studies on the heat exchanger design codes have been carried out, basically focusing on the use of fully time-dependent partial differential equations for mass, momentum, and energy balance. They are very complex and time-consuming, especially when the designers want to have full information in a full 3D system. The paper presents the 1D mathematical model for analysis of the thermal performance of the counter-current heat exchanger comprised of mixed time-dependent and time-independent equations, solved by the upwind numerical solution method, which allows for a reduction in the CPU time for obtaining the proper solution. The comparison of numerical results obtained from an in-house program called Upwind Heat Exchanger Solver written in a Fortran code, with those derived using commercial software package ASPEN, and those obtained experimentally, shows very good agreement in terms of the temperature and pressure distribution predictions. The proposed method for fast designing calculations appears beneficial for other tube shapes and types of heat exchangers.
期刊介绍:
The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.